Abstract 129P
Background
Most studies aimed to enhance immune checkpoint blockade (ICB) efficacy by converting an immune-inert cold tumor into an immune-inflamed hot one, and almost all previous biomarkers were explained by a hot feature. However, ICB resistance largely occurs even when tumors are highly hot. We and others have sporadically revealed some ICB resistance mechanisms specifically occurring in hot tumors. This study integrates big data to precisely classify hot tumors and identify potential targets.
Methods
We included 7099 in-house and external samples with available transcriptomic data from 73 ICB randomized trials or cohorts across 18 tumor types. Hot level was evaluated by classical mRNA markers. We calculated the meta-effect size of differentially expressed genes (DEGs) between responders and non-responders/long and short survival groups across studies.
Results
We used an iterative algorithm to reveal two populations: 1) those whose ICB efficacy are lacking due to having a cold tumor (Hot-dependent), and 2) those whose tumors are hot enough that hot level no longer influence outcomes (Hot-independent). Across all cancer types, over half (51.4%) of tumors are Hot-independent. Kidney cancer and nasopharyngeal carcinoma are mostly Hot-independent, while urothelial and lung cancer are mostly Hot-dependent (Hot-independent percentage: 82.4%, 81.2%, 23.1%, 31.3%, respectively). The significant DEGs are distinct between the Hot-independent and Hot-dependent groups. We developed a de novo signature (HotR score) to identify patients with hot tumors who still cannot benefit from ICB. Hot tumors with a high HotR score had similar ICB efficacy compared with cold tumors (OS: HR=1.05, P=0.74; PFS: HR=0.90, P=0.38). Hot tumors showed better outcomes of ICB over control treatment, but this advantage lost or even reversed in hot tumors when scoring high by HotR, especially in renal cell carcinoma (OS: HR=1.13, P=0.48; PFS: HR=1.14, P=0.5). Importantly, our signature can prioritize personalized targets to combine with ICB for hot tumors.
Conclusions
Our findings help distinguish patients with pseudo-hot ICB-refractory tumor and select targets to maximize their ICB efficacy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
A. Li.
Funding
This study was supported by the National Natural Science Foundation of China (81972898, 82172713, and 81972556), the Guangdong Basic and Applied Basic Research Foundation (2023B1515020008), and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (22ykqb15).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
163P - Tumorspheres cultured from circulating cancer stem cells overexpress the innate checkpoint CD47 in breast cancer patients
Presenter: Monika Pizon
Session: Poster session 08
Resources:
Abstract
164P - A spatially informed transcriptomic model to forecast early resistance to front-line osimertinib in advanced EGFR-mutant NSCLC
Presenter: Jon Zugazagoitia
Session: Poster session 08
165P - Consistency analysis of c-Met protein expression over time in patients with non-squamous non-small cell lung cancer
Presenter: Alexis Cortot
Session: Poster session 08
166P - Integrative multi-omics refine molecular diagnostics in non-small cell lung cancer
Presenter: Li Ren Kong
Session: Poster session 08
167P - Tumor-immune spatial interactions on NSCLC H&E slide images predicts immunotherapy response: Preliminary external validation
Presenter: Liam Il-Young Chung
Session: Poster session 08
168P - Biosimulation coupled with personalized tumor microenvironment (TME) modeling predicts response to immunotherapy treatment in NSCLC patients
Presenter: Himanshu Grover
Session: Poster session 08
169P - Analysis of tumor immune microenvironment with mIHC in Chinese non-small cell lung cancer
Presenter: Hao Wu
Session: Poster session 08
170P - Clinical presentations and prognosis of HER2-low breast cancer in Taiwan
Presenter: Grace Chen
Session: Poster session 08
171P - A computational pathology collagen signature predictive of tamoxifen benefit in ductal carcinoma in situ: Results from a cohort within the UK/ANZ DCIS randomized trial
Presenter: Arpit Aggarwal
Session: Poster session 08
172P - HER2 expression across solid tumors and real-world implications for use of fam-trastuzumab deruxtecan-nxki (T-Dxd)
Presenter: Ahmed Ismail
Session: Poster session 08