Abstract 129P
Background
Most studies aimed to enhance immune checkpoint blockade (ICB) efficacy by converting an immune-inert cold tumor into an immune-inflamed hot one, and almost all previous biomarkers were explained by a hot feature. However, ICB resistance largely occurs even when tumors are highly hot. We and others have sporadically revealed some ICB resistance mechanisms specifically occurring in hot tumors. This study integrates big data to precisely classify hot tumors and identify potential targets.
Methods
We included 7099 in-house and external samples with available transcriptomic data from 73 ICB randomized trials or cohorts across 18 tumor types. Hot level was evaluated by classical mRNA markers. We calculated the meta-effect size of differentially expressed genes (DEGs) between responders and non-responders/long and short survival groups across studies.
Results
We used an iterative algorithm to reveal two populations: 1) those whose ICB efficacy are lacking due to having a cold tumor (Hot-dependent), and 2) those whose tumors are hot enough that hot level no longer influence outcomes (Hot-independent). Across all cancer types, over half (51.4%) of tumors are Hot-independent. Kidney cancer and nasopharyngeal carcinoma are mostly Hot-independent, while urothelial and lung cancer are mostly Hot-dependent (Hot-independent percentage: 82.4%, 81.2%, 23.1%, 31.3%, respectively). The significant DEGs are distinct between the Hot-independent and Hot-dependent groups. We developed a de novo signature (HotR score) to identify patients with hot tumors who still cannot benefit from ICB. Hot tumors with a high HotR score had similar ICB efficacy compared with cold tumors (OS: HR=1.05, P=0.74; PFS: HR=0.90, P=0.38). Hot tumors showed better outcomes of ICB over control treatment, but this advantage lost or even reversed in hot tumors when scoring high by HotR, especially in renal cell carcinoma (OS: HR=1.13, P=0.48; PFS: HR=1.14, P=0.5). Importantly, our signature can prioritize personalized targets to combine with ICB for hot tumors.
Conclusions
Our findings help distinguish patients with pseudo-hot ICB-refractory tumor and select targets to maximize their ICB efficacy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
A. Li.
Funding
This study was supported by the National Natural Science Foundation of China (81972898, 82172713, and 81972556), the Guangdong Basic and Applied Basic Research Foundation (2023B1515020008), and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (22ykqb15).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
112P - Reporting of molecular test results from cell-free DNA analyses: Expert consensus recommendations from the 2023 European Liquid Biopsy Society ctDNA workshop
Presenter: Vincent de Jager
Session: Poster session 08
114P - Prevalence and landscape of pathogenic or likely pathogenic germline variants in cancer predisposition genes among selected patients with lung adenocarcinoma
Presenter: Oscar Gerardo Arrieta Rodriguez
Session: Poster session 08
115P - Gene rearrangements, actionability and access to precision medicine: Results from the ARCAGEN study
Presenter: Marie Morfouace
Session: Poster session 08
116P - Single-cell RNA sequencing reveals a subset of FSIP1 cancer cells and verified its value of prognosis in lung adenocarcinoma
Presenter: Xiaochen Zhang
Session: Poster session 08
Resources:
Abstract
117P - Methylome and transcriptome profiling of hepatoid adenocarcinoma of the stomach
Presenter: Shirong Zhang
Session: Poster session 08
Resources:
Abstract
118P - Comparative analysis of DNA and RNA-based NGS for detecting MET exon 14 skipping mutation in pan-solid tumor samples
Presenter: Ruijun Cai
Session: Poster session 08
119P - Predicting the pathogenicity of novel fusion genes and explaining reasons using a large language model: A focused assessment
Presenter: Katsuhiko Murakami
Session: Poster session 08
120P - A prospective comparative evaluation of automatic trial match tools in a molecular tumor board
Presenter: Lilia GUEGUEN
Session: Poster session 08