Abstract 490P
Background
Glioblastoma multiforme (GBM) is the most aggressive and incurable form of the central nervous system’ tumors. One of the characteristics hindering the efficacy of treatments is the diffuse infiltration of glioma cells into the surrounding parenchyma. Glioma stem cells (GSC) have been reported as the putative population responsible for glioma invasion and recurrences. The identification of new therapeutic targets blocking glioma cells migration is therefore of primary importance. Since many studies have focused on the role of small GTP-binding proteins of the Rho GTPases family in cancer cells motility, we here aimed to identify effective inhibitors of Rac1 and Cdc42, from in silico to in vitro study.
Methods
Docking and molecular dynamics simulations were used to identify and validate binding sites on target proteins. Virtual screening simulations, based on the known structure of targets, were applied to select possible inhibitors of Rho GTPases. Selected compounds were tested, on U87 MG glioblastoma cells, to exclude cytotoxic effects and to evaluate their ability to interfere with cell migration, in vitro. Finally, we tested the ability of the more effective compounds to inhibit the in vitro migration of 18 patients derived-GSC.
Results
Binding sites on Rac1 and Cdc42 GTPases were identified and validated, and a small number (21) of possible inhibitors were selected for in vitro studies. 3 compounds had shown a reduction of U87 cells migration greater than 50%. Interestingly, GSCs showed a different migration behaviour among patients and different sensibility to the tested compounds.
Conclusions
Three molecules, selected on the basis of in silico studies predicting their binding to Rho GTPases, were able to efficiently interfere with the migration capability of glioma cells in vitro.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
University of Udine.
Funding
Regione Autonoma Friuli Venezia Giulia - Italia, Ministero dell'Università e della Ricerca - Italia.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
469P - Detection of circulating tumor DNA (ctDNA) in cerebrospinal fluid (CSF) in patients with glioblastoma treated in phase I clinical trial
Presenter: Marie Porte
Session: Poster session 16
470P - Mitochondrial ribosomal proteins (MRPs) in glioblastoma multiforme: Omics approach
Presenter: Jehad Yasin
Session: Poster session 16
471P - PTEN alteration as a predictor of second-line efficacy in patients with recurrent IDHwt-glioblastoma
Presenter: Eugenia Cella
Session: Poster session 16
472P - Comprehensive quinomics assessment of BPM31510IV treatment in advanced glioblastoma multiforme patients
Presenter: Seema Nagpal
Session: Poster session 16
473P - A novel machine learning (ML) model integrating clinical and molecular data to predict response to second-line treatment in recurrent IDHwt-glioblastoma (rGBM)
Presenter: Maurizio Polano
Session: Poster session 16
474P - Potassium inward rectifier channel subfamily J member 11 mRNA expression in glioma and its significance in predicting prognosis and chemotherapy sensitivity
Presenter: kaijia zhou
Session: Poster session 16
Resources:
Abstract
475P - Optimising genomic testing for patients with central nervous system (CNS) tumours using oxford nanopore technology
Presenter: Alona Sosinsky
Session: Poster session 16
476P - The role of androgen receptor expression and epigenetic regulation in adult-type diffuse gliomas
Presenter: VINCENZO DI NUNNO
Session: Poster session 16
477P - ENHO's protective role in lower grade glioma
Presenter: Osama Younis
Session: Poster session 16