Abstract 824P
Background
FLT3-ITD is one of the most common genetic abnormalities in acute myeloid leukemia (AML) and suggests a poor prognosis. The impact of FLT3-ITD on the immune microenvirenment requires further elucidation. Studies have shown that FLT3-ITD can significantly change the level of immune cells in the bone marrow in mice.
Methods
Flow cytometry was used to detect the CD47 mean fluorescent intensity (MFI). The FLT3 wildtype (FLT3-OE, FLT3 over expression) or ITD mutation (FLT3-ITD) stable overexpression K562/HEL cells were constructed by lentiviral transfections. The TRANSFAC database was used to predict the transcription factor binding sites of the CD47 promoter. We analyzed the location of CD47 gene on the chromosome, the sequence of promoter and first non-coding exon of HOXB5 via Jaspar online tool. The AML mouse model was constructed by injection of FLT3-ITD cells.
Results
LDH-induced macrophage killing was less in FLT3-ITD cell lines than FLT3-WT cell lines. Expression of CD47 can help protect tumor cells from attack by macrophages. The CD47 MFI of the FLT3-ITD group was higher than that of the control group. The CD47 MFI of the FLT3-ITD group was significantly higher than that of FLT3-OE group and FLT3 normal control (FLT3-NC) group. Flow cytometry results showed that FLT3-ITD impaired the activity of red-stained macrophages to phagocytizing green-stained K652/HEL cells. Using the TRANSFAC database, we found higher relative expression of CD47 gene in FLT3-ITD group than other groups and that HOXB5 may regulate the expression of CD47 at transcriptional level. Integrated analysis of Jasper online tool, dual luciferase reporter gene assay and ChIP experiment suggest that HOXB5 directly activate CD47. Compared with other groups, combination of CD47 inhibitor and FLT3-ITD inhibitor Quizartinib (AC220) significantly enhanced phagocytic activity of macrophages. The mouse model of AML further showed that combination of CD47 inhibitor and Quizartinib significantly reduced tumor burden in spleen and bone marrow.
Conclusions
Our data show that FLT3-ITD can induce immune escape to macrophages by upregulating CD47. Combination therapy with CD47 inhibitor and FLT3-ITD inhibitor can be promising for the treatment of FLT3-ITD AML.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Sun Yat-sen University Start-Up Funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1173P - Combining mass spectrometry with quantitative continuous scoring to unlock the full quantitative potential of immunohistochemistry
Presenter: Ana Hidalgo-Sastre
Session: Poster session 09
1174P - FLAMINGO: Accurate cancer detection from ultra-low-pass whole genome sequencing of cell-free DNA
Presenter: Daan Vessies
Session: Poster session 09
1175P - Universal circulating tumor DNA quantification using deep learning
Presenter: Anders Skanderup
Session: Poster session 09
Resources:
Abstract
1176P - Potential utility of ctDNA to detect false positive PET/CT in the evaluation of lymphoma response
Presenter: Alejandro martín-muñoz
Session: Poster session 09
1177P - FRESH: The Gustave Roussy program to facilitate access to liquid biopsy for precision oncology in France
Presenter: Etienne Rouleau
Session: Poster session 09
1178P - EGFR evaluation in non-small cell lung cancer: An artificial intelligence approach to pre-molecular analysis
Presenter: Chad Vanderbilt
Session: Poster session 09
1179P - WomEC: a novel diagnostic test for the detection of endometrial cancer in uterine fluids
Presenter: Antonio Gil-Moreno
Session: Poster session 09
1180P - An integrated metabolomics-based platform for early-stage detection of multiple cancers
Presenter: imliwati longkumer
Session: Poster session 09
1181P - Diagnostic target product profiles for cancer: A demand signaling tool to stimulate innovation in early cancer diagnosis
Presenter: Sonja Marjanovic
Session: Poster session 09