Abstract 38P
Background
Tumor-infiltrating lymphocyte (TIL) therapy has emerged as a promising treatment for late-stage solid cancer patients. Most studies use fresh tumor fragments to expand TIL. Limited research exists on cryopreserving and long-term storing of tumors as TIL starting material. The aim of this study was to expand and characterize tumor-infiltrating lymphocytes (TILs) from tumor specimens stored in liquid nitrogen for over 12 months.
Methods
Tumors, resected from 20 patients with colorectal cancer, were immediately cut into small pieces and cryopreserved in liquid nitrogen for 14-20 months until use. Upon thawing tumor fragments were either placed in a TIL expansion media or were first subjected to enzymatic digestion. Serum-free culture media containing 500 units of IL2 was used for TIL expansion. CD3/CD28 antibodies were added at the start of the cultivation and every 7 days to activate TIL. After 10-22 days in culture, expanded TILs were characterized by phenotype. The ability of the expanded TIL to secrete interferon-ɣ (IFNɣ) was measured in the ELISPOT assay. T cell receptor (TCR) repertoire was analyzed on the starting tumor material and expanded TILs.
Results
The average storage time of the tumor starting material was 16 months. The success rate of TIL expansion was 50% and was the same when TILs were grown directly from small fragments or from single-cell tissue suspensions after enzymatic digestion. The mean percentage of CD3+ cells in TIL cultures was 85.31%. The mean percentage of CD4+ cells and CD8+ cells was 81.01% and 10.29% correspondingly. Regardless of the isolation method, 9 TIL cultures exhibited the high production of IFNgamma in the ELISPOT assay upon reactivation following cocultivation with phytohemagglutinin. Extended phenotype characterization and TCR repertoire analysis is ongoing.
Conclusions
Our study demonstrates the feasibility of using long-term cryopreserved tumor fragments for TIL expansion with further assessment of clonality, phenotyping and neoantigen specificity.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Federal Medical Biological Agency funding for the «T-kletki» project, 123032900030-7.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1792P - Molecular characterization from IMfirst: Atezolizumab plus chemotherapy in extensive-stage small cell lung cancer (ES-SCLC) in Spain
Presenter: Manuel Cobo Dols
Session: Poster session 07
1793P - Treatment and outcomes of limited disease small cell lung cancer (LD-SCLC) in the Canadian small cell lung cancer database (CASCADE)
Presenter: Sara Moore
Session: Poster session 07
1794P - Deciphering ERBB2-driven mechanisms that regulate tumor immune evasion and metastasis in SCLC
Presenter: Lydia Meder
Session: Poster session 07
1795P - Consolidation serplulimab following concurrent hypofractionated chemoradiotherapy for limited-stage SCLC: Preliminary analysis of phase II ASTRUM-LC01 study
Presenter: Yuqi Wu
Session: Poster session 07
1796P - Smoking-related genomic mutation patterns in patients with small cell lung cancer treated in ASTRUM-005 study
Presenter: Ying Cheng
Session: Poster session 07
1798P - Relapsed and refractory systemic therapy real-world outcomes in the Canadian small cell lung cancer database (CASCADE)
Presenter: Sara Moore
Session: Poster session 07
1799P - Efficacy and safety of integrating consolidative thoracic radiotherapy with immunochemotherapy in ES-SCLC: A real-world retrospective analysis
Presenter: Qi Zhang
Session: Poster session 07
1800P - Breaking chemo-immunotherapy resistance in SCLC-patient derived tumor with novel DDRi combinations
Presenter: Carminia Della Corte
Session: Poster session 07
1801P - Expression analysis of Fuc-GM1 ganglioside in first-line therapy for extensive-stage small cell lung cancer (ES-SCLC) with BMS-986012, nivolumab, and carboplatin-etoposide
Presenter: Kenneth O'Byrne
Session: Poster session 07