Abstract 1178P
Background
Non-small cell lung cancer (NSCLC) requires multiple genomics testing modalities for optimizing patient outcomes. The foremost of NSCLC biomarkers is EGFR sequencing. Sequencing comes with many challenges, including long turnaround time, high tissue requirements from small biopsies, and cost. An AI model using only digital whole slide images (WSI) can act as a rapid screening test to prioritize tissue for proper sequencing without expending tissue.
Methods
A vision transformer (ViT) base architecture is trained for classification of acinar, solid, lepidic, papillary, and micropapillary morphologies, using 1 million 2242 pixel patches extracted from 3475 WSIs. The training utilizes cross-entropy loss with the Adam optimizer with learning rate of 1e-4 and cosine weight decay scheduler. The pretrained encoder allows for extraction of 768-dimensional feature vectors from the last hidden layer for downstream tasks. For EGFR prediction, each of the 1558 training WSIs are decomposed to 2242 pixel patches and feature embeddings are extracted for each patch. Using a gated attention-based multiple instance learning model, EGFR WSI labels are predicted. The model was optimized using 260 WSIs to obtain best AUC. The best model was evaluated on a held-out set of 6300 WSIs before integration into a mock clinical workflow, enabling in real-time (IRT) EGFR prediction for 7 slides. The informatic backbone identifies WSI at time of scanning and transfers the slide for inference, complted within 30 minutes of scanning.
Results
On the validation dataset of 260 cases, our model exhibited an area under the curve (AUC) of 0.93 with a specificity of 0.90 and sensitivity of 0.88. The model, assessed on an independent validation set of 6300 cases, maintained a high AUC of 0.89 with negative/positive predictive value (NPV/PPV): NPV = 0.90; PPV = 0.71. On IRT cohort, using same threshold: NPV = 1.0; PPV = 0.66.
Conclusions
Implementing such a model that can be ran IRT with clinical WSIs can provide rapid insight and inform ongoing testing protocols (e.g. prioritize tissue for EGFR confirmation when positive or full genomics when negative). Continuous refinement and integration of IRT data will enhance performance to align with clinical process requirements.
Clinical trial identification
Editorial acknowledgement
During the preparation of this work the author(s) used ChatGPT in order to construct the abstract title. After using this tool, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.
Legal entity responsible for the study
The Warren Alpert Center for Digital and Computational Pathology, Memorial Sloan Kettering Cancer Center.
Funding
The Warren Alpert Foundation, The Warren Alpert Center for Digital and Computational Pathology, Memorial Sloan Kettering Cancer Center.
Disclosure
C.M. Vanderbilt: Financial Interests, Personal, Stocks or ownership: Paige AI. T. Fuchs: Financial Interests, Personal, Advisory Board, Founder, Equity holder, etc: Paige AI. M. Hameed: Financial Interests, Personal, Other, Fiduciary Role/Position: USCAP. A. Dogan: Financial Interests, Personal, Other, Professional Services and Activities: Incyte. All other authors have declared no conflicts of interest.
Resources from the same session
835P - Genetic, epigenetic, and clinical significance of Wilms’ tumor 1 (WT1) gene in acute myeloid leukemia
Presenter: Harsh Goel
Session: Poster session 09
Resources:
Abstract
836P - A prospective study to evaluate the prognostic implications and molecular mechanism of SLC40A1 gene in primary acute myeloid leukemia
Presenter: Harsh Goel
Session: Poster session 09
Resources:
Abstract
837P - Expression analysis, clinical significance and potential function of ALOX5AP in acute myeloid leukemia
Presenter: Harsh Goel
Session: Poster session 09
Resources:
Abstract
838P - Bayesian modeling in the survival analysis of patients with multiple myeloma with emphasis on missing data analysis
Presenter: Nelson Cruz Gutierrez
Session: Poster session 09
839P - Preliminary results from a phase II study of amulirafusp alfa (IMM0306) in patients with relapsed or refractory CD20-positive B-cell non-Hodgkin's lymphoma
Presenter: jianliang yang
Session: Poster session 09
840P - Orelabrutinib-based regimens in chronic lymphocytic leukemia with comorbidities: A real-world study
Presenter: Xun Lai
Session: Poster session 09
841P - Transforming the landscape of pediatric AML treatment: A cutting-edge SCT prognostic model
Presenter: Hua Yang
Session: Poster session 09
Resources:
Abstract
842P - Exploring the association of side-effects with depression in patients with chronic lymphocytic leukemia who have received treatment: An analysis of the lymphoma coalition’s 2022 global patient survey
Presenter: Natacha Bolanos Fernandez
Session: Poster session 09
843P - Challenges and insights in treating Langerhans cell histiocytosis: Persistent mutations and novel therapeutic approaches
Presenter: Marzieh NASHVI
Session: Poster session 09
844TiP - Orelabrutinib combined with rituximab for the treatment of elderly patients with newly diagnosed non-GCB diffuse large B-cell lymphoma (DLBCL) under the guidance of genetic subtype: A prospective, multicenter, single-arm, response-adaptive clinical study (Origin)
Presenter: Wanzhuo Xie
Session: Poster session 09