Abstract 931P
Background
Currently, there is a paucity of validated deep learning methodologies for predicting short-term efficacy in locally advanced nasopharyngeal carcinoma (NPC), both domestically and internationally. Furthermore, advanced techniques such as 2.5D feature extraction and Transformer model establishment remain underexplored in this context.
Methods
MRI images from locally advanced NPC patients diagnosed at two centers between July 2020 and June 2023 were retrospectively collected. Three state-of-the-art (SOTA) models (SegResNet, Unet, and UnetR models) were employed for automatic segmentation of all regions of interest (ROIs), thus generating an automatic segmentation model. Leveraging 2.5D deep learning techniques, tumor image features were extracted and integrated into a transfer learning framework. Subsequently, a Transformer-based model was designed, integrating all individual patient features. Three models were established: a clinical model, a Transformer model, and a fusion model. The predictive performance of these models was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA).
Results
Among the three models, the Transformer model demonstrated superior predictive performance in both the testing (AUC = 0.957) and validation cohorts (AUC = 0.893) compared to the clinical model. Moreover, the fusion model generally matched or surpassed the performance of the Transformer model, particularly in the testing cohort with an AUC of 0.874, indicating that the integration of clinical data with advanced machine learning models can enhance predictive capability.
Conclusions
The fusion model, which combines machine learning with clinical factors, exhibits promising efficacy in predicting short-term outcomes in locally advanced NPC patients following synchronous chemoradiotherapy.
Clinical trial identification
Editorial acknowledgement
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
927P - Preliminary results of the BROADEN study: Burden of human papillomavirus-related head and neck cancers
Presenter: Laia Alemany
Session: Poster session 03
928P - Radiomic analysis based on machine learning of multi-MR sequences to assess early treatment response in locally advanced nasopharyngeal carcinoma
Presenter: Lei Qiu
Session: Poster session 03
929P - Advanced laryngeal squamous cell carcinoma prognosis and machine learning insights
Presenter: Tala Alshwayyat
Session: Poster session 03
Resources:
Abstract
930P - Real-world data analysis of oncological outcomes in patients with pathological extranodal extension (ENE) in OSCC: A proposal to refine the pathological nodal staging system
Presenter: Abhinav Thaduri
Session: Poster session 03
932P - Accuracy and prognostic implications of extranodal extension on radiologic imaging in HPV-positive oropharyngeal cancer (HNCIG-ENE): A multinational, real-world study
Presenter: Hisham Mehanna
Session: Poster session 03
933P - Prediction of survival in patients with head and neck merkel cell carcinoma: Statistical and machine-learning approaches
Presenter: Jehad Yasin
Session: Poster session 03
934P - Harnessing artificial intelligence on real-world data to predict recurrence in head and neck squamous cell carcinoma patients: The HNC-TACTIC study
Presenter: Hisham Mehanna
Session: Poster session 03
936P - Chronic pain in cancer survivors: Head and neck versus other cancers
Presenter: Rong Jiang
Session: Poster session 03
937P - Pain, fatigue and depression symptom cluster in head and neck cancer survivors
Presenter: Iakov Bolnykh
Session: Poster session 03