Abstract 125P
Background
Presence of homologous recombination repair deficiency (HRD) in cancer cells is a biomarker for predicting responses to anticancer treatments acting through synthetic lethality, such as PARP inhibitors. HRD detection relies on functional or genomic approaches measuring genomic scars or genomic instability resulting from lack of functioning repair mechanisms. We evaluated 2 whole-genome microarray data analysis approaches for detecting HRD in cancer samples, compared to next-generation sequencing (NGS).
Methods
In total 212 FFPE samples were tested with OncoScan™ CNV Plus Assay for Research. Data was analyzed using 2 different approaches based on previously published methods: MTD1 (based on whole genome doubling events) and MTD2 (based on copy number analysis) with Chromosome Analysis Suite Version 4.3.0.71, Rstudio Version 2023.09.1+494, and R version 4.3.2. For all samples the HRD score obtained using a commercially available NGS-based assay was available for comparison. The sample cohort was split into the training (N=124 samples) and validation cohort (N=88 samples). Positive (PPA), negative (NPA) and overall percent agreements (OPA) between the microarray and commercial NGS-based approach were calculated.
Results
Analysis of 124 samples using MTD1 detected 30 samples with HRD. When compared to the commercially available HRD test the OPA was 88.7% (95% CI, 81.9-93.1%), with PPA of 80.8% (95% CI, 62.1-91.5%) and NPA of 90.82% (95% CI, 83.5-95.1%). MTD2 analysis approach of the same sample set detected HRD in 24 samples, reaching an OPA of 91.9% (95% CI, 85.8-95.6%), with PPA of 76.9% (95% CI, 57.9-89.0%) and NPA of 95.92% (95% CI, 90.0-98.4%). The analysis of the second sample cohort of 88 samples with MTD2 detected 41 samples with HRD and yielded similar agreement to the commercially available HRD test with OPA of 84.4% (95% CI, 75.1-90.3%), PPA of 80.0% (95% CI, 66.18-89.1%) and NPA of 88.37% (95% CI, 75.5-94.9%).
Conclusions
The Applied BiosystemsTM OncoScanTM CNV Plus Assay for Research offers a reliable and cost-effective alternative to NGS-based approaches for detection of HRD and can contribute to expanding access to HRD testing for cancer research.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Thermo Fisher Scientific.
Disclosure
C. Kidwell, A. Crawford: Financial Interests, Personal, Full or part-time Employment: Quantigen. M. Napier, A. Roter, D. Woo, J.S. Milosevic Feenstra: Financial Interests, Personal, Full or part-time Employment: Thermo Fisher Scientific.
Resources from the same session
102P - Dynamic profiling of ctDNA in HER2-alterated advanced NSCLC treated with pyrotinib and apatinib: Exploratory biomarker analysis from a phase II trial
Presenter: Yucheng Dong
Session: Poster session 08
103P - Epigenetic regulated genes enhanced fragmentomics-based model for early-stage lung cancer detection
Presenter: Yadong Wang
Session: Poster session 08
104P - The development of a classifier of somatic copy number alteration burden in liquid biopsy with potential clinical impact in advanced non-small cell lung cancer (NSCLC)
Presenter: Laura Bonanno
Session: Poster session 08
105P - Plasma ctDNA dynamics as clinical response biomarker for NSCLC: A systematic review and meta-analysis
Presenter: Luís Leite
Session: Poster session 08
106P - Longitudinal molecular characterization in plasma of EGFR mutant non-small cell lung cancer (NSCLC) experiencing early progression (EPD) on first-line osimertinib (Osi)
Presenter: Laura Bonanno
Session: Poster session 08
107P - Germline pathogenic variants identified in tissue- and blood-based whole exome sequencing in advanced solid tumors
Presenter: Takeshi Kuwata
Session: Poster session 08
108P - Assessing molecular characteristics in a large cohort of anal squamous cell carcinoma patients
Presenter: Cristina Smolenschi
Session: Poster session 08
109P - Development and validation of a digital PCR assay for detection and monitoring of universally methylated circulating tumor DNA in patients with high-grade sarcoma
Presenter: Elisabeth Ashton
Session: Poster session 08
110P - 13-plex non-invasive genotyping in HPV related cancers in the MOSCATO trial
Presenter: Elise Rupp
Session: Poster session 08
111P - Leveraging circulating tumor DNA sequencing for first-line cancer treatment: Insights from two prospective precision medicine studies
Presenter: Veronique Debien
Session: Poster session 08