Abstract 168P
Background
Although immunotherapy (IO) has emerged as a standard treatment option in patients with non-small cell lung cancer (NSCLC), current biomarkers are imperfect and could be improved upon. Understanding variations in both tumor microenvironment (TME) and tumor genomic composition may help. To explore this, we have combined output from a mechanistic computational biology model that integrates a patient’s tumor-based genomic profile to predict patient-specific IO signaling pathway dysregulation and drug response, with predicted TME cell composition using deconvoluted bulk transcriptomic data.
Methods
We developed and validated an algorithm for deconvolution of cell proportion and cell specific gene expression from bulk transcriptome data. Reference matrix was generated from single-cell NSCLC data (n= 823,622 cells). The locked algorithm was applied to bulk transcript data from 59 NSCLC patients (PMID:37024582) treated with immunotherapy to generate TME cell proportions (TCP). Computational biosimulation (Cellworks) was performed using WES data and used to generate an immunotherapy efficacy score (ES), simulating composite cell growth in response to disease and IO. Cox proportional hazards models were generated to test the hypothesis that TCP and ES are predictive of progression free survival (PFS).
Results
Bulk patient transcriptomic data was deconvoluted into 19 predicted TME cell types. Patient-specific TCPs correlated well with clinical response. Notably, a high proportion (>5%) of an M1-like macrophage subtype (high CXCL9/10, STAT1; low SPP1, CD206) was associated exclusively with patients showing some clinical benefit (n=15). Both ES and TCP significantly predicted PFS in a Cox proportional hazards model (p < 0.001), and combined use of ES and TCP further improved model performance (C-Index= 0.792, LRT=49.49, p = 0.002) compared to ES (C-Index= 0.61, LRT=8.32, p = 0.004) or TCP (C-Index= 0.75, LRT=35.57, p = 0.008) alone.
Conclusions
Integrating genomic and transcriptomic data to capture TME signaling offers a powerful tool for predicting IO response in NSCLC. These results warrant further prospective evaluation in larger cohorts.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Cellworks Group, Inc.
Funding
Cellworks Group, Inc.
Disclosure
H. Grover, A. Kumar, M. KS, P. Kumari, M. Patil, S. C, A. Chakraborty, J. Chauhan, R. Mandal, R. Sethia, S. Kulkarni, A. Tyagi, S. Kapoor, M.P. Castro, J. Wingrove: Financial Interests, Personal, Full or part-time Employment: Cellworks.
Resources from the same session
112P - Reporting of molecular test results from cell-free DNA analyses: Expert consensus recommendations from the 2023 European Liquid Biopsy Society ctDNA workshop
Presenter: Vincent de Jager
Session: Poster session 08
114P - Prevalence and landscape of pathogenic or likely pathogenic germline variants in cancer predisposition genes among selected patients with lung adenocarcinoma
Presenter: Oscar Gerardo Arrieta Rodriguez
Session: Poster session 08
115P - Gene rearrangements, actionability and access to precision medicine: Results from the ARCAGEN study
Presenter: Marie Morfouace
Session: Poster session 08
116P - Single-cell RNA sequencing reveals a subset of FSIP1 cancer cells and verified its value of prognosis in lung adenocarcinoma
Presenter: Xiaochen Zhang
Session: Poster session 08
Resources:
Abstract
117P - Methylome and transcriptome profiling of hepatoid adenocarcinoma of the stomach
Presenter: Shirong Zhang
Session: Poster session 08
Resources:
Abstract
118P - Comparative analysis of DNA and RNA-based NGS for detecting MET exon 14 skipping mutation in pan-solid tumor samples
Presenter: Ruijun Cai
Session: Poster session 08
119P - Predicting the pathogenicity of novel fusion genes and explaining reasons using a large language model: A focused assessment
Presenter: Katsuhiko Murakami
Session: Poster session 08
120P - A prospective comparative evaluation of automatic trial match tools in a molecular tumor board
Presenter: Lilia GUEGUEN
Session: Poster session 08