Abstract 1180P
Background
While early disease diagnosis currently offers the most viable strategy for reducing cancer deaths, screening tests for accurate detection of early-stage cancer are yet awaited. Although a variety of multi-cancer detection (MCD) tests are currently under development, they all suffer from a suboptimal detection sensitivity for stage I/II cancers. We, therefore, adopted a distinct approach that integrated untargeted serum metabolomics with deep learning-powered data analytics to capture cancer-specific metabolite signatures. This approach provided yielded a powerful multi-cancer detection tool that could detect a total of thirty cancers across all stages, including the early stages, with high accuracy. Furthermore, the tissue of origin could also be assigned to 21 of the cancers.
Methods
Serum samples were obtained in a prospective, observational, multi-centric trial from a total of 6500 participants. Of these, 3500 participants (male and female) were newly diagnosed, but treatment-naïve, cancer patients. This group collectively covered a total of 30 cancers. The remaining 3000 samples were from non-cancerous participants and were labeled as normal controls. After extraction of the metabolites, the serum metabolome profile was generated for each sample by high-resolution mass spectrometry coupled to ultra-pressure liquid chromatography (UPLC-HRMS/MS). The resulting data was then deconvoluted using a set of machine learning algorithms to first distinguish between cancer-positive and cancer-negative cases, followed by a further analysis of samples from the former group to identify the likely tissue of origin of the cancer.
Results
Reveal that our test system, named as OncoVeryx, could indeed detect all 30 cancers in females and males with high accuracy. The average detection sensitivity obtained was 97.5%, at a specificity of 99.2%. Importantly, the high detection sensitivity was also retained for the cancer stages I and II. Furthermore, cancer detection could also be complemented with identification of the tissue of origin for 21 cancers.
Conclusions
OncoVeryx, thus provides a promising new MCD test that is particularly suited for early-stage cancer detection.
Clinical trial identification
CL/MD/2024/000007; Dated 23 April 2024.
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1182P - Determination of tumor PSMA expression in prostate cancer from blood using a novel epigenomic liquid biopsy platform
Presenter: Praful Ravi
Session: Poster session 09
1183P - Impact of multicancer early detection (MCED) test on participant-reported outcomes (PRO) and behavioral intentions by cancer risk
Presenter: Christina Dilaveri
Session: Poster session 09
1184P - Early real-world experience with positive multi-cancer early detection (MCED) test cases and negative initial diagnostic work-up
Presenter: Candace Westgate
Session: Poster session 09
1185P - Clinical applications of a novel blood-based fragmentomics assay for lung cancer detection
Presenter: Marc Siegel
Session: Poster session 09
1186P - SmartCS-LPLLM: Enhancing early cancer detection through ctDNA methylation analysis leveraging large language models
Presenter: Li Chao
Session: Poster session 09
1187P - Molecular diagnosis of lung cancer via ctDNA and ctRNA detection on bronchoscopic fluid specimens from 31 patients: A retrospective analysis
Presenter: Vincent Fallet
Session: Poster session 09
1188P - Modeled economic and clinical impact of a multi-cancer early detection (MCED) test in a population with hereditary cancer syndromes
Presenter: Sana Raoof
Session: Poster session 09
1189P - Cancer genome interpreter: A data-driven tool for tumor mutation interpretation
Presenter: Santiago Demajo
Session: Poster session 09
1190P - Circulating tumor DNA from the tumor-draining pulmonary vein as a biomarker in resected non-small cell lung cancer
Presenter: Raphael Werner
Session: Poster session 09
1191P - Efficient lung cancer stage prediction and outcome informatics with Bayesian deep learning and MCMC method
Presenter: Maria Gkotzamanidou
Session: Poster session 09