Abstract 1205P
Background
The probability of discovering mutation-based therapy through comprehensive genomic profiling (CGP) remains low. To enhance the effectiveness and efficiency of precision medicine, it is crucial to identify patients who are likely to benefit from CGP tests. This study aimed to identify characteristics of patients in which mutation-based treatments are discovered by CGP tests.
Methods
We retrospectively analyzed data from 60,655 patients registered in the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) database, which covers 99.7% of cancer patients who have undergone CGP tests in Japan. We developed an eXtreme Gradient Boosting (XGBoost) machine learning model, and used clinical information as input to predict the likelihood of discovering mutation-based drugs through CGP tests. SHapley Additive exPlanations (SHAP) was employed to extract significant features contributing to the model prediction.
Results
The prediction model achieved an area under the receiver operating characteristic curve of 0.819 for the overall cancer population. Positive SHAP values were observed for patients with breast (mean SHAP in breast cancer patients: 1.66), lung (1.19), prostate (0.81), and colorectal (0.17) cancers, while negative SHAP values were associated with pancreatic (-2.40), brain (-1.37), and biliary tract (-0.44) cancers. Positive SHAP values were also associated with the presence of distant metastases and advanced age. Similar trends were observed in cancer type-specific prediction models. Distant metastasis was also associated with discovery of mutation-based therapy in the breast cancer-specific model, even after excluding liquid CGP data. In the adolescent and young adult (AYA) group, brain and bone tumors were associated with negative SHAP values.
Conclusions
Our analysis identified features that predict cases in which mutation-based treatments are discovered by CGP tests, both in the overall cancer population and within specific cancer types and the AYA group. Expedited CGP testing is recommended for patients who match the identified profile to facilitate early targeted therapy interventions.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
K. Watanabe, H. Kage: Financial Interests, Institutional, Research Funding: Konica Minolta. K. Oda: Financial Interests, Personal, Advisory Role: Chugai Pharma, Takeda, AstraZeneca/Merck, AstraZeneca, Konica Minolta; Financial Interests, Institutional, Research Funding: AstraZeneca/Merck, Konica Minolta. All other authors have declared no conflicts of interest.
Resources from the same session
1199P - Developing and systematically validating homologous recombination repair gene detection method based on next-generation sequencing
Presenter: Yi Sun
Session: Poster session 10
1200P - Investigation of multiphoton microscopy as an innovative tool for intraoperative section-free histologic investigations in just a few minutes
Presenter: Martí Homs Soler
Session: Poster session 10
1201P - Novel deep learning model and validation of whole slide images in lung cancer diagnosis
Presenter: Alhassan Ahmed
Session: Poster session 10
Resources:
Abstract
1202P - A deep learning approach using routine pathology images to guide precision medicine in metastatic CRC
Presenter: Chaitanya Parmar
Session: Poster session 10
1203P - Analytical evaluation of whole genome sequencing for acute myeloid leukemia
Presenter: Guidantonio Malagoli Tagliazucchi
Session: Poster session 10
1204P - Real-world utility of whole genome sequencing for patients with cancer: Evaluation of a regional implementation of the 100,000 genomes project
Presenter: Helen Robbins
Session: Poster session 10
1478P - Dual single-nucleotide polymorphism biomarker combination to select opioid for cancer pain management
Presenter: Yoshihiko Fujita
Session: Poster session 10
1479P - Use of rescue opioids and pain control after ketamine initiation in refractory cancer pain: A multicentric observational study
Presenter: Pablo Gallardo Melo
Session: Poster session 10
1480P - Long term therapy with denosumab and zoledronic acid: A comparative real-world retrospective observational study on skeletal-related events and pain in patients with metastatic breast cancer
Presenter: Giacomo Massa
Session: Poster session 10
1481P - A case-control study of drug-eluting microspheres and blank microspheres in bronchial artery embolization for hemoptysis in non-small cell lung cancer
Presenter: Tongguo Si
Session: Poster session 10