Abstract 120P
Background
Searching for clinical trials for a patient in Oncology requires extensive knowledge on selection criterias, molecular testings, status of the trial recruitment among other information, and for multiple trials options (https://pubmed.ncbi.nlm.nih.gov/38401694/). Automatic trial matching tools are currently developed to make this search easier and more exhaustive and mostly based on clinical information such as the cancer type, the genomic alterations and the geographical location.
Methods
We prospectively used preselected trial matching tools from 3 countries: France (Klineo, ScreenAct), Spain (Trialing) and the United Kingdom (DigitalECMT), all publically available. We analyzed sequential patients cases presented at the Molecular Tumor Board of the Centre Leon Berard. Each trial proposition result was manually reviewed for the selection criterias and the updated recruitment status. We used the Average Precision (AP) and Normalized Discounted Cumulative Gain (NDCG) metrics specifically dedicated to evaluate the performance of search engines and the performance of the ranking. We capped at 3 the number of evaluated results (AP@3 and NDCG@3).
Results
Between April 3 and June 12, 2024, we prospectively analyzed 157 patients affected by various types of metastatic cancers. Each patient had a mean of 2.19 (sd 3.13) trials proposed. The global performances of the tools were AP@3 mean 0.40, sd 0.44, and NDCG@3 mean 0.30, sd 0.34. The AP@3 and NDCG@3 scores were respectively 0.60 and 0.50 for Klineo, 0.36 and 0.25 for DigitalECMT, 0.34 and 0.24 for ScreenAct, and 0.30 and 0.23 for Trialing. We observed that 88% of the errors concerned selection criterias, and 24% concerned the status of the trial recruitment. The main limitations comprised gene variants not included in the tools, the specific type of presentation of the results, the number or types of previous treatment lines.
Conclusions
Publically available automatic Trial Matching tools are valuable help to orient patients to new therapeutic options, but may contain several erroneous results when taking full selection criterias and updated trial and cohort status, supporting a careful evaluation by the treating physician before using it for clinical decision support.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Centre Léon Bérard.
Funding
Centre Léon Bérard.
Disclosure
L. Verlingue: Financial Interests, Personal, Stocks/Shares, CEO of Resolved dedicated to treatment approval prediction: Resolved; Financial Interests, Institutional, Research Grant: Bristol Myers Squibb; Financial Interests, Institutional, Funding, Contract for bioinformatic analysis: Pierre Fabre, Servier; Non-Financial Interests, Advisory Role: Klineo; Non-Financial Interests, Institutional, Proprietary Information, As part of the Drug Development Department (DITEP) of Gustave Roussy and of the Phase 1 unit of Centre Léon Bérard, as medical doctor, LV report being: Principal/sub-Investigator of Clinical Trials for AbbVie, Adaptimmune, Aduro Biotech, Agios Pharmaceuticals, Amgen, Argen-X Bvba, Arno Therapeutics, Astex Pharmaceuticals, AstraZeneca Ab, Aveo, Basilea Pharmaceutica International Ltd, Bayer Healthcare Ag, Bbb Technologies Bv, BeiGene, Blueprint Medicines, Boehringer Ingelheim, Boston Pharmaceuticals, Bristol Myers Squibb, Ca, Celgene Corporation, Chugai Pharmaceutical Co, Clovis Oncology, Cullinan-Apollo, Daiichi Sankyo, Debiopharm, Eisai, Eisai Limited, Eli Lilly, Exelixis, Faron Pharmaceuticals Ltd, Forma Tharapeutics, Gamamabs, Genentech, GSK, H3 Biomedicine, Hoffmann-La Roche Ag, Imcheck Therapeutics, Innate Pharma, Institut De Recherche Pierre Fabre, Iris Servier, Janssen Cilag, Janssen Research Foundation, Kura Oncology, Kyowa Kirin Pharm. Dev, Lilly France, Loxo Oncology, Lytix Biopharma A: Pharmas. All other authors have declared no conflicts of interest.
Resources from the same session
133P - Neoadjuvant pembrolizumab plus lenvatinib in resectable stage III melanoma patients (pts) (NeoPele): Analysis of the peripheral immune profile correlated to pathological response
Presenter: Ines Pires da Silva
Session: Poster session 08
134P - Unraveling functionally distinct metabolic programs to predict immunotherapy response in non-small cell lung cancer (NSCLC)
Presenter: Arutha Kulasinghe
Session: Poster session 08
135P - Soluble PD-L1 (sPD-L1) as a predictive biomarker in patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs) in the first-line setting
Presenter: Adrien Costantini
Session: Poster session 08
136P - Circulating hPG80 (WNT pathway activation) as a potential new prognostic/predictive factor of immunotherapy (ICI) efficacy: ONCOPRO prospective study
Presenter: Benoit You
Session: Poster session 08
137P - Long circulating-free DNA fragments predict early-progression (EP) and progression-free survival (PFS) in advanced carcinoma treated with immune-checkpoint inhibition (ICI): A new biomarker
Presenter: Sebastien Salas
Session: Poster session 08
138P - Toward predicting immune checkpoint blockade response in oesophageal squamous cell carcinoma: Integrating tumour and blood characteristics
Presenter: Amelie Franken
Session: Poster session 08
139P - Multimodal prognosis modeling of advanced NSCLC treated with first-line immunochemotherapy: Integrating genomic and microenvironmental data
Presenter: Yi Hu
Session: Poster session 08
140P - Mining metastatic lymph nodes for response to immune checkpoint therapy in non-small cell lung cancer
Presenter: Elena Donders
Session: Poster session 08
141P - Circulating immune cells predict immunotherapy benefit in patients with triple negative breast cancer: Preliminary results from the IRIS study
Presenter: Benedetta Conte
Session: Poster session 08
142P - Exploring tumor mutational burden and frameshift mutations as predictors of immune checkpoint inhibitor efficacy
Presenter: Mai Hoshino
Session: Poster session 08