Abstract 487P
Background
3D-Bioprinting has become a valuable tool for studying the biology of solid tumours, including the most aggressive and invasive primary brain tumour, glioblastoma multiforme (GBM). Intratumoural heterogeneity and the intricate tumor microenvironment (TME) communication contribute to the resistance of GBM cells to therapy and infiltration of immune effector cells. The generation of 3D-bioprinted glioblastoma models aims to more accurately reproduce the complex characteristics of GBM tissue compared to traditional cell cultures, especially when studying such a dynamic issue as chemokine secretion.
Methods
Here, we analysed publicly available bulk and single-cell RNA sequencing data to identify the cell types that secrete particular chemokines in the glioblastoma tumour-microenvironment. Next, we 3D-bioprinted cells from two glioblastoma cell lines, U251 and DK-MG, alone and as co-cultures with primary mesenchymal stromal cells, and assessed chemokine secretion using Luminex method.
Results
Our findings indicate that primary GBM tissues express multiple chemokines, whereas spherical cultures of GBM cells significantly lose this diversity. Comparative analysis of GBM spherical vs bioprinted tetra-cultures containing astrocytes, neuronal cells and macrophages, showed significant restoration of chemokine landscape diversity in 3D-bioprinted cultures. Furthermore, single cell RNA-Seq analysis showed that cells of the perivascular niche also express chemokines in the GBM TME. Analysis of our 3D-bioprinted cultures of cells from two GBM cell lines, U251 and DK-MG, alone and as co-cultures with mesenchymal stromal cells, clearly demonstrated that the interaction of tumour and mesenchymal cells results in a significant increase of the repertoire and levels of secreted chemokines.
Conclusions
Our study indicates that cells of perivascular niche may perform a substantial role in shaping the chemokine landscape in GBM tumours.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
Funding
This research was funded by the National Science Centre, Poland (2020/37/B/NZ6/02191) and a subsidy via National Oncology Institute of Maria Sklodowska-Curie – National Research Institute (project BIODRUK-CAR; decision of Ministry of Science and Higher Education No. 89/WFSN/2021).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
469P - Detection of circulating tumor DNA (ctDNA) in cerebrospinal fluid (CSF) in patients with glioblastoma treated in phase I clinical trial
Presenter: Marie Porte
Session: Poster session 16
470P - Mitochondrial ribosomal proteins (MRPs) in glioblastoma multiforme: Omics approach
Presenter: Jehad Yasin
Session: Poster session 16
471P - PTEN alteration as a predictor of second-line efficacy in patients with recurrent IDHwt-glioblastoma
Presenter: Eugenia Cella
Session: Poster session 16
472P - Comprehensive quinomics assessment of BPM31510IV treatment in advanced glioblastoma multiforme patients
Presenter: Seema Nagpal
Session: Poster session 16
473P - A novel machine learning (ML) model integrating clinical and molecular data to predict response to second-line treatment in recurrent IDHwt-glioblastoma (rGBM)
Presenter: Maurizio Polano
Session: Poster session 16
474P - Potassium inward rectifier channel subfamily J member 11 mRNA expression in glioma and its significance in predicting prognosis and chemotherapy sensitivity
Presenter: kaijia zhou
Session: Poster session 16
Resources:
Abstract
475P - Optimising genomic testing for patients with central nervous system (CNS) tumours using oxford nanopore technology
Presenter: Alona Sosinsky
Session: Poster session 16
476P - The role of androgen receptor expression and epigenetic regulation in adult-type diffuse gliomas
Presenter: VINCENZO DI NUNNO
Session: Poster session 16
477P - ENHO's protective role in lower grade glioma
Presenter: Osama Younis
Session: Poster session 16