Abstract 162P
Background
Radiomics has emerged as a potential tool to predict clinical outcomes in prostate cancer (Pca ). MRI has a fundamental role in staging and radiotherapy planning, being affected in the case of receiving prior androgen deprivation treatment (ADT). The aim of this study was to determine imaging biomarker profiles that allow to identify patients with a worse prognosis and a higher risk of biochemical relapse (BQR).
Methods
A single-center, retrospective, observational study was designed. Baseline MRIs (T2w, DWI and/or DCE sequences) from PCa patients treated with ADT and radiotherapy were included. Using Quibim’s QP-Prostate ® solution, subregions (Transition + Central Zone [TZ + CZ], Peripheral zone [PZ] and seminal vesicles [SV]) were automatically segmented. For each subregion and for the whole prostate (WP), computed using the weighted biomarkers averaging, 105 radiomic features (shape and textures) from T2w, apparent diffusion coefficient (ADC) variables from DWI and perfusion parameters from DCE were extracted.
Results
A total of 128 T2w, 107 DWI and 62 DCE MRIs from 128 PCa patients (32 [25%] low or favourable intermediate risk [group 1] and 96 (75%) high or unfavourable intermediate risk [group 2]) were included, of whom 20 (16%) experienced BQR (18 [19%] from group 2). According to risk stratification, patients from group 1 presented more homogeneous textures in PZ and WP than group 2. Regarding BQR, the ADC mean was higher in the TZ in those who did not relapse, while patients with greater major axis length in the PZ, WP and SV were more likely to relapse. In SV and WP heterogenicity-related feature values were significantly higher in BQR. In group 2, diffusion parameters and shape variables in the SV were significantly different in those experiencing BQR.
Conclusions
Imaging biomarker profiles in this PCa population may help to better stratify patients at risk based on baseline MRIs. High-risk patients may be identified by the heterogeneity of textures. Diffusion and texture parameters may determine a higher probability of relapse.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
186P - Pooled efficacy and safety data of alectinib (A) vs. crizotinib (C) from the randomized phase III ALEX and J-ALEX trials
Presenter: Marco Tagliamento
Session: Poster session 01
187P - Ipatasertib and atezolizumab in cancers with increased PI3K-AKT pathway activity: First results from the CRAFT trial
Presenter: Christoph Heilig
Session: Poster session 01
188P - The landscape of SMARCA2 genomic alterations in Chinese cancer patients
Presenter: Chen Jiaqi
Session: Poster session 01
189P - Design and enrollment for a classifier development study for a blood-based multi-cancer early detection (MCED) test
Presenter: Christopher Douville
Session: Poster session 01
190P - Quantitative serum tumor markers (CEA, CA19-9, and CA-125) are independently predictive of survival in patients with appendiceal adenocarcinoma
Presenter: John Paul Shen
Session: Poster session 01
191P - Novel approach to proficiency testing demonstrates wide gaps in biomarker quality for colon cancer treatment
Presenter: Kassandra Bisson, Brandon Sheffield
Session: Poster session 01
192P - Impact of oncogenic fibroblast growth factor receptor (FGFR) alterations in patients with advanced solid tumors in a real-world setting
Presenter: Hussein Sweiti
Session: Poster session 01
194P - Early kinetics of C-reactive protein for cancer-agnostic prediction of therapy response and mortality in patients treated with immune checkpoint inhibitors: A multi-center cohort study
Presenter: Dominik Barth
Session: Poster session 01
195P - Identification of biomarkers associated with checkpoint inhibitor pneumonitis based on serum proteomic approach and construction of an online interactive visual prediction model
Presenter: Xiaohui Jia
Session: Poster session 01
196P - Serum metabolomics to determine survival of immunotherapy for advanced non-small cell lung cancer: Metabolomic analysis based on two cohorts
Presenter: Yanjun Xu
Session: Poster session 01