Abstract 162P
Background
Radiomics has emerged as a potential tool to predict clinical outcomes in prostate cancer (Pca ). MRI has a fundamental role in staging and radiotherapy planning, being affected in the case of receiving prior androgen deprivation treatment (ADT). The aim of this study was to determine imaging biomarker profiles that allow to identify patients with a worse prognosis and a higher risk of biochemical relapse (BQR).
Methods
A single-center, retrospective, observational study was designed. Baseline MRIs (T2w, DWI and/or DCE sequences) from PCa patients treated with ADT and radiotherapy were included. Using Quibim’s QP-Prostate ® solution, subregions (Transition + Central Zone [TZ + CZ], Peripheral zone [PZ] and seminal vesicles [SV]) were automatically segmented. For each subregion and for the whole prostate (WP), computed using the weighted biomarkers averaging, 105 radiomic features (shape and textures) from T2w, apparent diffusion coefficient (ADC) variables from DWI and perfusion parameters from DCE were extracted.
Results
A total of 128 T2w, 107 DWI and 62 DCE MRIs from 128 PCa patients (32 [25%] low or favourable intermediate risk [group 1] and 96 (75%) high or unfavourable intermediate risk [group 2]) were included, of whom 20 (16%) experienced BQR (18 [19%] from group 2). According to risk stratification, patients from group 1 presented more homogeneous textures in PZ and WP than group 2. Regarding BQR, the ADC mean was higher in the TZ in those who did not relapse, while patients with greater major axis length in the PZ, WP and SV were more likely to relapse. In SV and WP heterogenicity-related feature values were significantly higher in BQR. In group 2, diffusion parameters and shape variables in the SV were significantly different in those experiencing BQR.
Conclusions
Imaging biomarker profiles in this PCa population may help to better stratify patients at risk based on baseline MRIs. High-risk patients may be identified by the heterogeneity of textures. Diffusion and texture parameters may determine a higher probability of relapse.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
176P - Enhancing immunotherapy response prediction via multimodal integration of radiology and pathology deep learning models
Presenter: Marta Ligero
Session: Poster session 01
177P - Revealing differences in radiosensitivity of advanced non-small cell lung cancer (NSCLC)through single-cell sequencing data
Presenter: Peimeng You
Session: Poster session 01
178P - Explainable radiomics, machine and deep learning models to predict immune-checkpoint inhibitor treatment efficacy in advanced non-small cell lung cancer patients
Presenter: Leonardo Provenzano
Session: Poster session 01
179P - Molecular tumor board directed treatment for patients with advanced stage solid tumors: A case-control study
Presenter: Dhruv Bansal
Session: Poster session 01
180P - An HLA-diet-oriented system unveiling organ-specific occurrence of multiple primary cancers (MPC) with prevention strategy: A large cohort study of 47,550 cancer patients
Presenter: Zixuan Rong
Session: Poster session 01
181P - GeNeo: Agnostic comprehensive genomic profiling versus limited panel organ-directed next-generation sequencing within the Belgian PRECISION initiative
Presenter: Philippe Aftimos
Session: Poster session 01
182P - ALK fusion detection by RNA next-generation sequencing (NGS) compared to DNA in a large, real-world non-small cell lung cancer (NSCLC) dataset
Presenter: Wade Iams
Session: Poster session 01
183P - Frequency of actionable fusions in 7,735 patients with solid tumors
Presenter: Kevin McDonnell
Session: Poster session 01
184P - Patient-specific HLA-I genotypes predict response to immune checkpoint blockade
Presenter: Kyrillus Shohdy
Session: Poster session 01
185P - Real-world data analysis of genomic profiling-matched targeted therapy outcomes in patients with fusion-positive NSCLC
Presenter: Jyoti Patel
Session: Poster session 01