Abstract 1269P
Background
The rate of lung cancer recurrence following curative surgical resection is 30-55% and remains a significant challenge in patient management. Accurate prediction of recurrence risk is crucial for guiding treatment decisions, such as the use of (neo-)adjuvant chemo- or immunotherapy, the extent of lung resection, and follow-up strategies. We present a preoperative machine learning model that uses patient computed tomography (CT) images and demographic features to predict lung cancer recurrence.
Methods
We collected a dataset of 588 clinical stage I-IIIA lung cancer patients who underwent surgical treatment for lung cancer, of which 147 had lung cancer recurrence. This includes retrospectively collected CT images and associated demographic and pathological data from patients in both screening and clinical settings from the US National Lung Screening Trial (NLST) and the North Estonia Medical Centre (NEMC). The preoperative model was trained to predict the likelihood of recurrence on a diverse set of features, including radiomic features extracted from CT images and relevant clinical variables. An 8-fold cross validation strategy was used, where, in each fold, 6 (of the 8 equally sized) subsets were used for training, one for model tuning, and one for validation. As a baseline, we compare the preoperative model to ranked clinical staging. Performance was evaluated using the Area-Under-the-ROC-Curve (AUC), sensitivity, and specificity.
Results
Lung cancer recurrence prediction results are tabulated below. We find that our model performs significantly better (AUC=61.4, Sen=18.2) than preoperative staging alone (AUC=56.1, Sen=16.4, p-value=0.035). Table: 1269P
AUC, sensitivity and specificity performance of our machine learning model compared with ranked TNM staging. The specificity is set to 90.0 for a rule-in context
Predictors | AUC | Sensitivity | Specificity |
TNM | 56.1 (51.1, 61.2) | 16.4 (10.1, 23.6) | 90.0 |
Our model | 61.4 (56.7, 66.3) | 18.2 (10.2, 24.5) | 90.0 |
Conclusions
Based on this retrospective analysis, we find that our model outperforms clinical staging prediction of lung cancer recurrence in preoperative settings. With further development, this algorithm could prove a valuable tool to aid the management of lung cancer patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Optellum.
Funding
Optellum.
Disclosure
A. Gasimova, N. Waterfield Price, L. Freitag: Financial Interests, Personal, Full or part-time Employment: Optellum. All other authors have declared no conflicts of interest.
Resources from the same session
1301P - A prognostic clinical and circulating biomarker model to identify futile chemo-radiotherapy (CRT) in stage III NSCLC
Presenter: Rianne Vaes
Session: Poster session 04
1302P - Treatment outcomes and safety of durvalumab following definitive chemoradiotherapy among patients with stage III NSCLC in Thai populations: A real-world, multi-center observational study
Presenter: Piyada Sitthideatphaiboon
Session: Poster session 04
1303P - Immune-modulating effects on tumor draining lymph nodes following neoadjuvant chemoradiotherapy combined with immunotherapy in patients with T3-4N0-1 NSCLC
Presenter: Ezgi Ulas
Session: Poster session 04
1304P - A structured multidisciplinary approach for diagnosing immune-related pneumonitis in patients undergoing adjuvant durvalumab for stage III non-small cell lung cancer
Presenter: Illaa Smesseim
Session: Poster session 04
1305P - Importance of the resected lung tumor specimen in patients with locally advanced and metastatic non-small cell lung cancer undergoing prior targeted therapy
Presenter: Jeong Uk Lim
Session: Poster session 04
1307P - The Biocartis Idylla GeneFusion Assay (RUO) for lung cancer testing: The experience of testing over 5000 tumours in routine practice
Presenter: Lee Robertson
Session: Poster session 04
1308P - Diameter threshold for lung nodules at low-dose CT screening: Chinese population screening experience
Presenter: YE WENJUN
Session: Poster session 04
1309P - Immune exhaustion in tumor-free lymph nodes of non-small cell lung cancer (NSCLC) patients is associated with performance status and survival
Presenter: Laura Sellmer
Session: Poster session 04
1310P - Loratadine: A potential game-changer in lung cancer treatment with improved survival outcomes
Presenter: Xiwen Liu
Session: Poster session 04
1311P - Understanding the basis for intrinsic resistance to KRASG12C inhibitors
Presenter: Alba Santos Ramos
Session: Poster session 04