Abstract 210P
Background
Vascularization is known to be linked to tumour growth. We explored the potential of automated lung tumour vascularity assessment as risk factor for landmark survival.
Methods
131 CT scans from the NSCLC Radiogenomics dataset were evaluated. All patients underwent surgery, with or without other therapies. Primary lung tumour (PLT) is segmented by a radiologist. Vessels segmentation (arteries and veins) is performed by an in-house deep learning segmentation model. Vascularity features extracted for the PLT include: amount of blood vessel connections, % of the tumour surface connected to vessels (%area), and basic statistics on the surface area of the connections. A generalized linear model (GLM) to predict landmark survival was trained with these features, tumour volume, and clinical factors. Stepwise feature reduction was performed to arrive to the final model. We present the odds ratio (OR) as well as a combined risk score for the remaining independent predictors.
Results
Landmark survival was reached for 86/131 (66%) patients. GLM analysis showed 4 independent risk factors related to landmark survival: %area (OR= 1.69 for >2.5%), age (OR=1.57 for >70 years), gender (OR=2.10 for male) and radiation therapy (OR=1.51 for yes). Smoking status and tumor volume were not retained in the final model. We also showed that risk of dying before landmark survival increased with increased number risk factors (0%, 18%, 40%, 48% and 100% for 0, 1, 2, 3, 4 risk factors, respectively).
Conclusions
Lung tumour vascularity is an independent risk factor for landmark survival. We showed an approach were it can be used as additional prognostic factor to inform clinical decision making and therapy planning.
Clinical trial identification
Editorial acknowledgement
Fabio Bottari, PhD, of Radiomics for providing medical writing support in accordance with Good Publication Practice ( GPP 2022) guidelines.
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
F. Blistein, F. Belmans, S. Goffart, L. Libert, R. Narasimhan, A. Corsi: Financial Interests, Personal, Full or part-time Employment: Radiomics. W. Vos: Financial Interests, Personal, Leadership Role: Radiomics. M. Occhipinti: Financial Interests, Personal, Financially compensated role: Radiomics. All other authors have declared no conflicts of interest.
Resources from the same session
185P - Real-world data analysis of genomic profiling-matched targeted therapy outcomes in patients with fusion-positive NSCLC
Presenter: Jyoti Patel
Session: Poster session 01
186P - Pooled efficacy and safety data of alectinib (A) vs. crizotinib (C) from the randomized phase III ALEX and J-ALEX trials
Presenter: Marco Tagliamento
Session: Poster session 01
187P - Ipatasertib and atezolizumab in cancers with increased PI3K-AKT pathway activity: First results from the CRAFT trial
Presenter: Christoph Heilig
Session: Poster session 01
188P - The landscape of SMARCA2 genomic alterations in Chinese cancer patients
Presenter: Chen Jiaqi
Session: Poster session 01
189P - Design and enrollment for a classifier development study for a blood-based multi-cancer early detection (MCED) test
Presenter: Christopher Douville
Session: Poster session 01
190P - Quantitative serum tumor markers (CEA, CA19-9, and CA-125) are independently predictive of survival in patients with appendiceal adenocarcinoma
Presenter: John Paul Shen
Session: Poster session 01
191P - Novel approach to proficiency testing demonstrates wide gaps in biomarker quality for colon cancer treatment
Presenter: Kassandra Bisson, Brandon Sheffield
Session: Poster session 01
192P - Impact of oncogenic fibroblast growth factor receptor (FGFR) alterations in patients with advanced solid tumors in a real-world setting
Presenter: Hussein Sweiti
Session: Poster session 01
194P - Early kinetics of C-reactive protein for cancer-agnostic prediction of therapy response and mortality in patients treated with immune checkpoint inhibitors: A multi-center cohort study
Presenter: Dominik Barth
Session: Poster session 01
195P - Identification of biomarkers associated with checkpoint inhibitor pneumonitis based on serum proteomic approach and construction of an online interactive visual prediction model
Presenter: Xiaohui Jia
Session: Poster session 01