Abstract 145P
Background
In this study, we use KEM® (Knowledge Extraction and Management) explainable Artificial Intelligence (xAI) platform to systematically explore association rules in a heterogeneous patient database accounting for above 30 cancer types and thus identify biomarkers characterizing patients with higher chances of survival. The list of candidates’ biomarkers included drug scores generated by OncoKEM®, an AI-transcriptional-based therapeutic recommendation-tool that computes scores for up to 205 drugs based on the drug's transcriptional signatures and the tumor transcriptional profile. The goal was to demonstrate the biological relevance of OncoKEM® by confronting its results with the findings obtained through a standard pathway analysis.
Methods
Data was retrieved from the PROFILER study (NCT01774409), a molecular screening program, and aggregated into a consolidated database totaling 247 patients and 215,670 variables that included survival, baseline descriptors, gene expression, derived REACTOME pathway dysregulations, and OncoKEM® scores. KEM® xAI platform extracted 55,335 relations associating candidate biomarkers and survival. These results were then filtered based on Support (number of examples), Lift (relative probability) and statistical significance. The remaining relations were finally split into 2 sets to study the associations between survival and respectively pathways dysregulations or OncoKEM® scores.
Results
Our analysis first identified 4 pathway dysregulations that were associated with the overall survival (hazard ratio ranged from 2.36 to 2.80). 3 of these pathways were related to tubulin. Consistently, 4 OncoKEM® scores were then identified as associated with survival (hazard ratio ranged from 2.20 to 2.52) and all 4 corresponded to microtubule inhibitor drugs: ixabepilone, cabazitaxel, vinflunine and brentuximab vedotin.
Conclusions
Our analysis enabled the identification of biomarkers of survival across cancer types. The consistency of the findings both demonstrated the biological relevance of OncoKEM® for microtubule inhibitor drugs and paved the way for the use of this tool as a prognostic marker for refractory cancers.
Clinical trial identification
NCT01774409.
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Ariana Pharma.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
217P - Clinical and molecular features of PTCH1 mutant in solid tumors
Presenter: Xuezheng Li
Session: Poster session 01
218P - Peripheral T cell activation phenotype is associated with clinical outcomes and immune-related adverse events of ipilimumab-nivolumab in advanced hepatocellular carcinoma
Presenter: WON SUK LEE
Session: Poster session 01
219P - Multicentric evaluation of amplicon-based next-generation sequencing solution for local comprehensive molecular tumor profiling
Presenter: Eloisa Jantus Lewintre
Session: Poster session 01
220P - Biomarker of blood age and inflammation in older cancer patients might predict outcome
Presenter: Marcus Vetter
Session: Poster session 01
221P - Peripheral T cell activation phenotype predicts clinical outcomes of atezolizumab-bevacizumab therapy in unresectable hepatocellular carcinoma
Presenter: Chan Kim
Session: Poster session 01
222P - Therapeutic opportunities for porcupine inhibition in gastrointestinal cancer
Presenter: Natalie Cook
Session: Poster session 01
223P - Artificial intelligence-based pathomics biomarker predict primary resistance to first-line treatment in metastatic colorectal cancers
Presenter: Gianluca Mauri
Session: Poster session 01
224P - Germline HLA-I/II is not associated with clinical outcome but the absence of HLA-A01 or the presence of HLA-B27 supertypes were correlated with improved clinical outcome among patients with NSCLC treated with pembrolizumab in combination with chemotherapy
Presenter: Afaf Abed
Session: Poster session 01
225P - Utility of next-generation sequencing (NGS) in patients with advanced cancer in a low-middle income country
Presenter: Milton Lombana Quinonez
Session: Poster session 01
226P - LongiBloodImmunoM: A multi-step analysis pipeline for longitudinal blood-based immunomonitoring for immunotherapy clinical trial
Presenter: Jiangfeng Ye
Session: Poster session 01