Abstract 145P
Background
In this study, we use KEM® (Knowledge Extraction and Management) explainable Artificial Intelligence (xAI) platform to systematically explore association rules in a heterogeneous patient database accounting for above 30 cancer types and thus identify biomarkers characterizing patients with higher chances of survival. The list of candidates’ biomarkers included drug scores generated by OncoKEM®, an AI-transcriptional-based therapeutic recommendation-tool that computes scores for up to 205 drugs based on the drug's transcriptional signatures and the tumor transcriptional profile. The goal was to demonstrate the biological relevance of OncoKEM® by confronting its results with the findings obtained through a standard pathway analysis.
Methods
Data was retrieved from the PROFILER study (NCT01774409), a molecular screening program, and aggregated into a consolidated database totaling 247 patients and 215,670 variables that included survival, baseline descriptors, gene expression, derived REACTOME pathway dysregulations, and OncoKEM® scores. KEM® xAI platform extracted 55,335 relations associating candidate biomarkers and survival. These results were then filtered based on Support (number of examples), Lift (relative probability) and statistical significance. The remaining relations were finally split into 2 sets to study the associations between survival and respectively pathways dysregulations or OncoKEM® scores.
Results
Our analysis first identified 4 pathway dysregulations that were associated with the overall survival (hazard ratio ranged from 2.36 to 2.80). 3 of these pathways were related to tubulin. Consistently, 4 OncoKEM® scores were then identified as associated with survival (hazard ratio ranged from 2.20 to 2.52) and all 4 corresponded to microtubule inhibitor drugs: ixabepilone, cabazitaxel, vinflunine and brentuximab vedotin.
Conclusions
Our analysis enabled the identification of biomarkers of survival across cancer types. The consistency of the findings both demonstrated the biological relevance of OncoKEM® for microtubule inhibitor drugs and paved the way for the use of this tool as a prognostic marker for refractory cancers.
Clinical trial identification
NCT01774409.
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Ariana Pharma.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
207P - Palbociclib (P) in patients (pts) with solid tumors with CDK4 or CDK6 amplification (amp): Results from the Targeted Agent and Profiling Utilization Registry (TAPUR) study
Presenter: Maged Khalil
Session: Poster session 01
208P - Identification of BCOR mutation as a novel predictor of immunotherapy efficacy in gastrointestinal tumors
Presenter: Wuping Wang
Session: Poster session 01
209P - Molecular atlas of copy number variation(CNV) in lung cancer with brain metastases
Presenter: Xianfeng Zhang
Session: Poster session 01
210P - Lung tumour vascularity is a risk factor for survival in NSCLC patients undergoing surgery
Presenter: Andrea Riccardo Filippi
Session: Poster session 01
211P - Cost-efficient detection of NTRK1, NTRK2 and NTRK3 gene rearrangements using the test for 5’/3’-end unbalanced expression: The analysis of 8075 patients
Presenter: Evgeny Imyanitov
Session: Poster session 01
212P - Extracellular vesicle miRNA as effective biomarkers for predicting antitumor efficacy in lung adenocarcinoma treated with chemotherapy and checkpoint blockade
Presenter: Si Sun
Session: Poster session 01
213P - Unlocking cancer treatment opportunities by population-based advanced diagnostics in Norway
Presenter: Hege Russnes
Session: Poster session 01
214P - PESSA: A shiny app for pathway enrichment score-based survival analysis in cancer
Presenter: Ying Shi
Session: Poster session 01
215P - Identifying predictors of overall survival among TMB-low cancer patients treated with immune checkpoint inhibitors
Presenter: Camila Xavier
Session: Poster session 01
216P - PTCH1 mutation as a potential predictor of immune checkpoint inhibitors in gastrointestinal cancer
Presenter: Yang Tang
Session: Poster session 01