Abstract 9P
Background
In the era of immunotherapy (IT), radiomics emerged as a non-invasive tool to decode tumor immune microenvironment (TIME) and predict IT response. Intrinsic patient and tumor variability challenging the explainability of radiomic readouts might be overcome in preclinical settings. Thus, we aimed to develop a μCT radiomic platform in a CD8 T cell functionally manipulated orthotopic murine model, closely mimicking human head and neck cancer, to validate the biological reality of radiomics in assessing tumor infiltrating lymphocytes (TILs).
Methods
Set-up, training and validation experiments (N Tot = 50 C57BL/6 mice) were conducted as follows: submucosal injection of 0.5 x 106 TC1-luc cells in the right inner lip and generation of an orthotopic model of head and neck cancer (day [D] -7); tailored treatment consisting of irradiation [D0] ± anti-CD8 antibody [D3] to selectively enrich or deplete CD8+ TILs; in vivo preclinical imaging through Quantum FX μCT technology [D3, D4]; mice euthanasia and tumor sampling [D4], followed by immunohistochemical staining for CD8; μCT image pre-processing (voxel resampling, image discretization and delineation of the volume of interest) and radiomic features (RFs) extraction (pyradiomics).
Results
We developed and optimized an efficient quantitative μCT imaging approach. Overall, 106 μCT RFs (shape, first- and second- order) were extracted and correlated with distinct TIME. Following redundant feature elimination (Spearman correlation, cut-off = 0.99) and Z-score standardization, we identified 12 μCT-RFs differentially regulated in T CD8 enriched vs depleted TIME (P < 0.05, Mann Whitney). The statistical performance of our CD8 signature, documented in both training and validation sets, was further implemented when pooled data were analysed (P < 0.01). Finally, by applying a reconstruction algorithm, we obtained a 3D map of CD8+ TILs, which enabled us to correlate the spatial distribution of immune cells with μCT textural parameters.
Conclusions
Our results document the feasibility and accuracy of radiomics to detect dramatic changes in T cells within the TIME, thus providing effective radio-immune signatures potentially translatable into clinical practice.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Institut Gustave Roussy.
Funding
ESMO (Translational Research Fellowship; Recipient: Dr. Giulia Mazzaschi).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
89P - Cold atmospheric plasma-activated fluids as a potential new intravesical agent for the treatment of bladder cancer
Presenter: Maria Filomena Botelho
Session: Poster session 09
90P - Discovery of CMPD1 as a tumor-specific cytotoxic microtubule inhibitor
Presenter: Mamoru Takada
Session: Poster session 09
91P - Erythroid precursor-differentiated myeloid cells promote pulmonary metastasis in hepatocellular carcinoma
Presenter: Wei-hang Zhu
Session: Poster session 09
92P - Discovery of novel AXL and MER inhibitors as potential anticancer and immune modulator drugs
Presenter: Hsing-Pang Hsieh
Session: Poster session 09
93P - Transcriptome changes of immune cells across chemotherapy of triple-negative breast cancer
Presenter: Tatiana Gerashchenko
Session: Poster session 09
509P - Spatial analysis of tumor-associated macrophages within the tumor microenvironment of primary tumors and matched brain metastases
Presenter: Markus Kleinberger
Session: Poster session 09
510P - CD47 regulates cellular and metabolic plasticity in glioblastoma
Presenter: Ruhi Polara
Session: Poster session 09
511P - Immunodisruptive conditions and glioma diagnosis: 24-year retrospective study of an under-recognized scenario
Presenter: Santiago Cabezas-Camarero
Session: Poster session 09
512P - Heterozygous germline Fanconi anemia-related gene mutations increase susceptibility to central nervous system germ cell tumors
Presenter: Guangyu Wang
Session: Poster session 09
513P - Cyclin pathway in oligodendrogliomas IDH mut and 1p/19q codeleted
Presenter: Maria Angeles Vaz Salgado
Session: Poster session 09