Abstract 9P
Background
In the era of immunotherapy (IT), radiomics emerged as a non-invasive tool to decode tumor immune microenvironment (TIME) and predict IT response. Intrinsic patient and tumor variability challenging the explainability of radiomic readouts might be overcome in preclinical settings. Thus, we aimed to develop a μCT radiomic platform in a CD8 T cell functionally manipulated orthotopic murine model, closely mimicking human head and neck cancer, to validate the biological reality of radiomics in assessing tumor infiltrating lymphocytes (TILs).
Methods
Set-up, training and validation experiments (N Tot = 50 C57BL/6 mice) were conducted as follows: submucosal injection of 0.5 x 106 TC1-luc cells in the right inner lip and generation of an orthotopic model of head and neck cancer (day [D] -7); tailored treatment consisting of irradiation [D0] ± anti-CD8 antibody [D3] to selectively enrich or deplete CD8+ TILs; in vivo preclinical imaging through Quantum FX μCT technology [D3, D4]; mice euthanasia and tumor sampling [D4], followed by immunohistochemical staining for CD8; μCT image pre-processing (voxel resampling, image discretization and delineation of the volume of interest) and radiomic features (RFs) extraction (pyradiomics).
Results
We developed and optimized an efficient quantitative μCT imaging approach. Overall, 106 μCT RFs (shape, first- and second- order) were extracted and correlated with distinct TIME. Following redundant feature elimination (Spearman correlation, cut-off = 0.99) and Z-score standardization, we identified 12 μCT-RFs differentially regulated in T CD8 enriched vs depleted TIME (P < 0.05, Mann Whitney). The statistical performance of our CD8 signature, documented in both training and validation sets, was further implemented when pooled data were analysed (P < 0.01). Finally, by applying a reconstruction algorithm, we obtained a 3D map of CD8+ TILs, which enabled us to correlate the spatial distribution of immune cells with μCT textural parameters.
Conclusions
Our results document the feasibility and accuracy of radiomics to detect dramatic changes in T cells within the TIME, thus providing effective radio-immune signatures potentially translatable into clinical practice.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Institut Gustave Roussy.
Funding
ESMO (Translational Research Fellowship; Recipient: Dr. Giulia Mazzaschi).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
57P - Metastasis organotropism: Unveiling associated proteins using network biology
Presenter: Margarida Carrolo
Session: Poster session 09
59P - Correlation of tumor microenvironment signature in advanced stage non-small cell lung cancer with EGFR mutation who received EGFR-TKIs
Presenter: Chaiyapong Ngamchokwathana
Session: Poster session 09
60P - Establishment and characterization of a novel lung adenocarcinoma cell line HX-JCJ harboring MET ex14 skipping mutation
Presenter: Xuejin Ou
Session: Poster session 09
61P - Next generation sequencing and its clinical utility in advanced cancer: Single institute experience from low-middle income country
Presenter: Amit Badola
Session: Poster session 09
62P - Prebiotics modulate gut microbiota-mediated T cell immunity to enhance sintilimab inhibition of lung cancer
Presenter: QIN YAN
Session: Poster session 09
63P - Addition of human chorionic gonadotropin to the current standard mobilization approach with granulocyte-colony stimulating factor increases overall survival in a murine model of peripheral blood stem cell transplantation: Are we far enough for therapy?
Presenter: Andrei Cismaru
Session: Poster session 09
64P - Developing novel therapeutics for bladder cancer leveraging drosophila models
Presenter: Takuya Moriguchi
Session: Poster session 09
65P - Ionizing radiation induces vascular smooth muscle cell senescence through activating NF-κB-CTCF-p16 pathway
Presenter: xuefeng zheng
Session: Poster session 09
66P - Exploring the radiobiology and dosimetry of targeted alpha therapy as a tool to optimize its clinical application: A preclinical study
Presenter: Maria Filomena Botelho
Session: Poster session 09
67P - The effect of non-viral gene-immune therapy via OX40L or 4-1BBL on murine subcutaneous CT26 colon cancer model
Presenter: Olga Rakitina
Session: Poster session 09