Abstract 235TiP
Background
Hamlet.rt (Heuristics, Algorithms and Machine Learning: Evaluation & Testing in Radiation Therapy) is a multi-centre study exploring the role of machine learning in predicting response and toxicity in patients receiving radical radiotherapy for non-small cell lung cancer (NSCLC), Head and Neck Cancer (H&N Cancer) and Prostate cancer. Hamlet.rt Trans is a translational sub-study that leverages the infrastructure of Cancer Research UK RadNet Cambridge to evaluate multiple liquid biomarkers of radiation response. This study aims to investigate biomarkers of treatment response in patients with lung and head and neck cancers and markers of treatment toxicity in patients with prostate cancer.
Trial design
HAMLET.trans is a translational biosampling study of patients undergoing radical radiotherapy for NSCLC, H&N cancer or prostate cancer. Venous samples for ctDNA analysis and senescence-related profiling are collected together with dried blood spot samples before chemotherapy and radiotherapy at multiple time points during radiotherapy and post-treatment. Urine is collected from patients with prostate cancer. Patients are completing toxicity questionnaires during and after radiotherapy. Delivery dose per fraction is assessed based on imaging just before radiotherapy delivery. The trial aims to recruit at least 20 patients per arm. Patient samples are analysed for tumor-specific mutation, methylation profiling of cfDNA as well as cytokine assays to establish markers or response and toxicity and identify optimal sample timings for future studies. Blood spots are analysed for ctDNA tumour content to establish a less invasive way of frequent sampling on therapy. The results of HAMLET.trans will inform ongoing translational work.
Clinical trial identification
NCT04060706.
Editorial acknowledgement
Legal entity responsible for the study
Cambridge Cancer Trials Centre.
Funding
Cancer Research UK and the Medical Research Council UK.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
304P - Generalizability of 313-SNP PRS for breast cancer risk in non-European ancestries
Presenter: Helen Shang
Session: Poster session 02
305P - Prognostic implications of HER2 changes after neoadjuvant chemotherapy in patients with HER2-zero and HER2-low breast cancer
Presenter: Sora Kang
Session: Poster session 02
307P - Identifying new biological subgroups of triple-negative breast cancer using next-generation integrative clustering pipeline
Presenter: Xixuan Zhu
Session: Poster session 02
308P - Regression-based deep-learning predicts breast cancer recurrence risk score from pathology slides
Presenter: Omar El Nahhas
Session: Poster session 02
310P - Longitudinal evaluation of circulating tumour DNA in early breast cancer using a plasma-only methylation-based assay
Presenter: Mitchell Elliott
Session: Poster session 02
311P - Multinational survey study assessing genetic testing and counselling among patients (pts) with breast cancer (MAGENTA): Results on the genetic counselling experience
Presenter: Ranjit Kaur
Session: Poster session 02
312P - Prediction model of breast cancer patient’s neoadjuvant treatment outcome using breast cancer organoids cultured from core needle biopsies
Presenter: Dong Woo Lee
Session: Poster session 02
313P - Intrinsic subtypes in a cohort of early breast cancer patients
Presenter: Theresa Bracht
Session: Poster session 02