Abstract 32P
Background
Secondary trastuzumab resistance seriously affects HER2-positive breast cancer treatment. However, we still lack knowledge about changes in tumor cells and their interaction with tumor microenvironment (TME) components during resistance formation. This study aimed to uncover metabolism pathway changes during trastuzumab resistance formation and potential epigenetic variations that are relevant to these processes.
Methods
Induced secondary trastuzumab-resistant SKBR3_HR cell line together with the original trastuzumab-sensitive SKBR3 cell line were applied in this study. Total RNA was collected for transcriptome analysis. Anti-H3K4me3, K27me3 and K27ac antibodies were chosen for CUT&Tag sequencing library preparation. Total genome DNA was prepared for Micro-C sequencing library preparation. Activity score of metabolism pathway was calculated as relative gene expression value averaged over all genes in this pathway in certain cell types. Extracellular prostaglandin E2 (PGE2) was measured by ELISA.
Results
SKBR3_HR cells showed higher trastuzumab tolerance than SKBR3 cells. Upregulation of arachidonic acid metabolism, which was characterized by two overexpressed genes, PTGS1 and PTGES, was observed in SKBR3_HR cells, resulting in PGE2 accumulation in culture medium. Variations of 1519 H3K27me3 peaks and 256 H3K4me3 peaks at promoters were observed during resistance formation. Little H3K27me3 but considerable raised H3K4me3 levels at PTGS1 and PTGES gene promoters may stimulate their transcription.692 altered active enhancers were measured during resistance formation. Meanwhile, 2741 and 7007 DNA loops were lost and gained. New DNA loops formation between PTGS1 gene promoter and enhancers nearby, indicating a positive synergy regulatory on PTGS1 gene expression together with promoter modifications.
Conclusions
During trastuzumab resistance formation, promoter H3K4me3, active enhancers and DNA loops together regulate PTGS1 and PTGES expression, activate arachidonic acid metabolism, and eventually stimulate PGE2 accumulation.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
National Natural Science Foundation of China (81972484), National Natural Science Foundation of China (82203488).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
57P - Metastasis organotropism: Unveiling associated proteins using network biology
Presenter: Margarida Carrolo
Session: Poster session 09
59P - Correlation of tumor microenvironment signature in advanced stage non-small cell lung cancer with EGFR mutation who received EGFR-TKIs
Presenter: Chaiyapong Ngamchokwathana
Session: Poster session 09
60P - Establishment and characterization of a novel lung adenocarcinoma cell line HX-JCJ harboring MET ex14 skipping mutation
Presenter: Xuejin Ou
Session: Poster session 09
61P - Next generation sequencing and its clinical utility in advanced cancer: Single institute experience from low-middle income country
Presenter: Amit Badola
Session: Poster session 09
62P - Prebiotics modulate gut microbiota-mediated T cell immunity to enhance sintilimab inhibition of lung cancer
Presenter: QIN YAN
Session: Poster session 09
63P - Addition of human chorionic gonadotropin to the current standard mobilization approach with granulocyte-colony stimulating factor increases overall survival in a murine model of peripheral blood stem cell transplantation: Are we far enough for therapy?
Presenter: Andrei Cismaru
Session: Poster session 09
64P - Developing novel therapeutics for bladder cancer leveraging drosophila models
Presenter: Takuya Moriguchi
Session: Poster session 09
65P - Ionizing radiation induces vascular smooth muscle cell senescence through activating NF-κB-CTCF-p16 pathway
Presenter: xuefeng zheng
Session: Poster session 09
66P - Exploring the radiobiology and dosimetry of targeted alpha therapy as a tool to optimize its clinical application: A preclinical study
Presenter: Maria Filomena Botelho
Session: Poster session 09
67P - The effect of non-viral gene-immune therapy via OX40L or 4-1BBL on murine subcutaneous CT26 colon cancer model
Presenter: Olga Rakitina
Session: Poster session 09