Abstract 54P
Background
Lymph nodes (LN) are the most frequent metastasis sites in oesophageal squamous cell carcinoma (ESCC), but the associated mechanisms are poorly understood. Tumor cells seed and survive at LN during the early adaptation step, which is the bottleneck for successful metastasis. However, the phenotypic and molecular characteristics of heterogeneous metastatic cells that contribute to such a challenging process remain elusive.
Methods
We established a human xenograft spontaneous LN metastasis model to capture tumor cell dissemination behaviors. We conducted single-cell RNA sequencing on tumor cells collected from primary tumors and metastatic LN to profile the dynamic cellular and molecular changes in tumor cells associated with LN metastasis. We further identified and characterized the early metastasis tumor cells in LN through in vitro and in vivo functional assays.
Results
We revealed that LN metastasis is initiated by rare ESCC subpopulations with stemness and mesenchymal regulatory gene expression signatures. These tumor cell subpopulations are critical to driving metastasis in distant organs through the blood circulation in mice, supporting the metastasis-initiating cells (MICs) properties. Importantly, these key driver cells were observed to convert the metabolic strategy to mitochondrial oxidative phosphorylation (OXPHOS) during cell seeding in the LN. Enhanced OXPHOS in LN metastatic cells is induced by fatty acids and regulated by NRF2 signaling. Pharmacological inhibition of OXPHOS with IACS-010759 markedly attenuated metastasis in mice.
Conclusions
Our results demonstrate the important role of mitochondrial OXPHOS in promoting ESCC metastasis and suggest the clinical therapeutic potential of OXPHOS inhibitors for preventing metastatic spread in ESCC patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
National Natural Science Foundation of China (82103643, 82072738, 82072731).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
45P - Therapeutic potential of ISM8207: A novel QPCTL inhibitor, in triple-negative breast cancer and B-cell non-Hodgkin lymphoma
Presenter: Sujata Rao
Session: Poster session 09
46P - Effect of coadministration of antioxidant chlorophyllin with docetaxel on invasion and metastasis in triple-negative breast cancer in vivo/in vitro
Presenter: Ayse Burus
Session: Poster session 09
47P - An ozone delivery system by cisplatin prodrug self-assembling micelles combining microwave to sensitizing immune checkpoint inhibitor in triple-negative breast cancer
Presenter: Dan Zheng
Session: Poster session 09
48P - Non-steroid anti-inflammatory treatment enhances the efficacy of modulated electro hyperthermia on triple-negative breast cancer and melanoma cancer models in vivo
Presenter: Nino Giunashvili
Session: Poster session 09
49P - Circulating miRNA signatures to predict recurrence in patients with pathological complete response of triple-negative breast cancer
Presenter: Ana Julia de Freitas
Session: Poster session 09
50P - Application and mechanism of tarloxotinib in HER2-positive breast cancer
Presenter: Xinyi Shao
Session: Poster session 09
51P - Nanoengineered sonosensitive platelets for synergistically augmented sonodynamic breast tumour therapy by glutamine deprivation and cascading thrombosis
Presenter: Liqiang Zhou
Session: Poster session 09
53P - Treatment of cancer cells based on circulating tumor cell’s expression profile using off-label drugs
Presenter: Panagiotis Apostolou
Session: Poster session 09
55P - Transcriptional profiles of engineered T cells stimulated with different receptor structures and co-stimulatory domains
Presenter: Ungue Shin
Session: Poster session 09
56P - SLC34A2-ROS1 L2026M+G2032R confers resistance to ROS1 tyrosine kinase inhibitors in Ba/F3 cells through a reduced ATP binding pocket volume
Presenter: Christa Dijkhuizen
Session: Poster session 09