Abstract 39P
Background
Helicobacter pylori is the most important carcinogen in human gastric cancer. However, the pathogenic molecular mechanism which underlies the carcinogenesis in gastric cancer by H. pylori remains largely unknown. In this study, we understand that molecular biological mechanism related to gastric carcinogenesis by investigating the role of CK2 in EMT. Casein kinase 2 is a serine/threonine protein kinase and consists of two catalytic subunits (α or α’) and regulatory subunits (β). CK2 regulates many substrates and its involved in cell growth, proliferation, invasion. EMT is involved in many signaling pathways, but the key regulatory kinases in this process have not been clearly identified. Although the role of CK2 catalytic subunits has remained largely uncharacterized, several studies have recently focused on regulator subunits in EMT.
Methods
AGS and MKN74 cells as human gastric epithelial cells and H. pylori strains, H. pylori 60190 (CagA+) and H. pylori ΔCagA (CagA-) were used. Protein and mRNA levels of CK2 were tested by Western blot and RT-PCR in AGS cells infected with H. pylori 60190. We also examined in vivo assay through tumor weight and size by xenograft mouse model. Expression levels of CK2 were analyzed in 54 gastric tissues from patients with gastric carcinoma by immunohistochemistry.
Results
Although CK2α protein expression remained unchanged during H. pylori infection, we found that CK2α kinase activity was increased in gastric epithelial cells. We also found that the CK2β protein level decreased in H. pylori-infected gastric cancer cells in CagA-dependent manner and demonstrated that CagA induced CK2β degradation via HDM2. We observed that CagA induced HDM2 protein phosphorylation and that p53 levels were decreased in H. pylori-infected gastric cancer cells. We also found that the downregulation of CK2β triggered the upregulation of Snail levels in gastric cancer cells. Furthermore, our in vivo experiments and functional assays of migration suggest that CK2β downregulation is a major factor responsible for the EMT in gastric cancer.
Conclusions
In summary, we have shown that the downregulation of CK2β in H. pylori-infected gastric cancer cells promotes the EMT in CagA-dependent manner.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Yonsei University College of Medicine.
Funding
National Research Foundation Of Korea.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
24P - Single cell transcriptomics of the immune cells during chemotherapy in triple-negative breast cancer patients
Presenter: Anastasia Frolova
Session: Poster session 09
25P - Role of AXL activation on adaptive resistance to KRAS-G12C inhibitors in KRAS-G12C-mutated non-small cell lung cancer
Presenter: Tadaaki Yamada
Session: Poster session 09
26P - Pre-clinical modelling and treatment of BRAF mutated colorectal cancer
Presenter: Mark White
Session: Poster session 09
27P - Extending a classification system for atypical BRAF mutations to improve targeted therapies in colorectal cancer cells
Presenter: Abhinav Madduri
Session: Poster session 09
28P - Xanthine oxidase as a prognostic factor in colorectal cancer metastatic disease
Presenter: Anton Burlaka
Session: Poster session 09
29P - The effect of cancer associated fibroblast-derived activin A on colorectal cancer progression
Presenter: Simone Stang
Session: Poster session 09
30P - Prostaglandin signaling in tumour stroma interaction in colorectal cancer and its impact on the secretome and functional relevance
Presenter: Mario Macia-Guardado
Session: Poster session 09
31P - Cell-free tumor microRNA as early biomarkers of high-grade cervical intraepithelial neoplasia using liquid biopsy
Presenter: Stéphanie Calfa
Session: Poster session 09
32P - Epigenetic reprogramming induced prostaglandin E2 accumulation via overactivated arachidonic acid metabolism during trastuzumab resistance formation of HER2-positive breast cancer
Presenter: yongmei yin
Session: Poster session 09
33P - Visualizing trastuzumab-deruxtecan action in HER2+ breast cancer cells at nanoscale
Presenter: Katia Cortese
Session: Poster session 09