Abstract 50P
Background
HER2 (Human epidermal growth factor receptor-2)-positive breast cancer occupies about 15%–20% of all breast cancer, the current treatment of which is still based on surgery and adjuvant targeted therapy with monoclonal antibody. Problems of drug resistance and cardiotoxicity hinder the use of monoclonal antibodies. And, TKIs (Tyrosine Kinase Inhibitors) have the advantages of multi-target, reduced drug resistance and lower cardiotoxicity. Tarloxotinib is a prodrug that harnesses tumor hypoxia to generate high levels of a potent, covalent pan-HER TKI, Tarloxotinib-effector (Tarloxotinib-E), within tumor microenvironment. This tumor-selective delivery mechanism was designed to minimize the dose-limiting toxicities.
Methods
HER2-positive breast cancer BT-474, SK-BR-3, HCC-1954 and JIMT-1 cells were treated with different concentrations of Tarloxotinib-E, Lapatinib and Tucatinib. The IC50 values were determined by CCK-8 assay. Then, we used Western Blot to detect the changes in the phosphorylation of EGFR, HER2, HER3, HER4, AKT and ERK and the protein expression of Cleaved Caspase-3, Caspase-7 and Parp1. Flow cytometry was used to determine the apoptosis rates and mitochondrial membrane potentials, and the mitochondrial superoxide was detected by the Immunofluorescence. Importantly, we used HPLC-TQ-MS to determine the ratio of Tarloxotinib-E released by Tarloxotinib. Finally, the subcutaneous xenograft mice were used to evaluate the antitumor effect and toxicity of Tarloxotinib in vivo.
Results
Tarloxotinib could be transformed into Tarloxotinib-E by breast cancer cells under hypoxia. Meanwhile, Tarloxotinib-E could effectively inhibit the level of HER family phosphorylation and downstream signaling in HER2-positive breast cancer cells, and superior to Lapatinib and Tucatinib. Mechanistically, Tarloxotinib-E induced apoptosis in HER2-positive breast cancer cells through a ROS-dependent manner, with significant decrease in the potential of mitochondrial membrane and increase in mitochondrial superoxide. During the in vivo experiment, Tarloxotinib significantly inhibited tumor growth in nude mice compared with Lapatinib.
Conclusions
Tarloxotinib released Tarloxotinib-E under hypoxic microenvironment of breast tumors, and inhibited the phosphorylation of HER2 dimers and downstream pathways to induce apoptosis in HER2-positive cells through a ROS-dependent manner. This lays a foundation for the further development of Tarloxotinib in HER2-positive breast cancer.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Nanjing Municipal Science and Technology Bureau Grant the Medical Engineering Cooperation Project No. 202110032.The Second Hospital of Nanjing Grant the Talent Support Program No. RCMS23004 and the High-level Talents Program No. 202302. Key Research Program of Gusu School No. GSKY20220105.The Postgraduate Research and Practice Innovation Program of Jiangsu Province No. KYCX22_1927.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
57P - Metastasis organotropism: Unveiling associated proteins using network biology
Presenter: Margarida Carrolo
Session: Poster session 09
59P - Correlation of tumor microenvironment signature in advanced stage non-small cell lung cancer with EGFR mutation who received EGFR-TKIs
Presenter: Chaiyapong Ngamchokwathana
Session: Poster session 09
60P - Establishment and characterization of a novel lung adenocarcinoma cell line HX-JCJ harboring MET ex14 skipping mutation
Presenter: Xuejin Ou
Session: Poster session 09
61P - Next generation sequencing and its clinical utility in advanced cancer: Single institute experience from low-middle income country
Presenter: Amit Badola
Session: Poster session 09
62P - Prebiotics modulate gut microbiota-mediated T cell immunity to enhance sintilimab inhibition of lung cancer
Presenter: QIN YAN
Session: Poster session 09
63P - Addition of human chorionic gonadotropin to the current standard mobilization approach with granulocyte-colony stimulating factor increases overall survival in a murine model of peripheral blood stem cell transplantation: Are we far enough for therapy?
Presenter: Andrei Cismaru
Session: Poster session 09
64P - Developing novel therapeutics for bladder cancer leveraging drosophila models
Presenter: Takuya Moriguchi
Session: Poster session 09
65P - Ionizing radiation induces vascular smooth muscle cell senescence through activating NF-κB-CTCF-p16 pathway
Presenter: xuefeng zheng
Session: Poster session 09
66P - Exploring the radiobiology and dosimetry of targeted alpha therapy as a tool to optimize its clinical application: A preclinical study
Presenter: Maria Filomena Botelho
Session: Poster session 09
67P - The effect of non-viral gene-immune therapy via OX40L or 4-1BBL on murine subcutaneous CT26 colon cancer model
Presenter: Olga Rakitina
Session: Poster session 09