Abstract 50P
Background
HER2 (Human epidermal growth factor receptor-2)-positive breast cancer occupies about 15%–20% of all breast cancer, the current treatment of which is still based on surgery and adjuvant targeted therapy with monoclonal antibody. Problems of drug resistance and cardiotoxicity hinder the use of monoclonal antibodies. And, TKIs (Tyrosine Kinase Inhibitors) have the advantages of multi-target, reduced drug resistance and lower cardiotoxicity. Tarloxotinib is a prodrug that harnesses tumor hypoxia to generate high levels of a potent, covalent pan-HER TKI, Tarloxotinib-effector (Tarloxotinib-E), within tumor microenvironment. This tumor-selective delivery mechanism was designed to minimize the dose-limiting toxicities.
Methods
HER2-positive breast cancer BT-474, SK-BR-3, HCC-1954 and JIMT-1 cells were treated with different concentrations of Tarloxotinib-E, Lapatinib and Tucatinib. The IC50 values were determined by CCK-8 assay. Then, we used Western Blot to detect the changes in the phosphorylation of EGFR, HER2, HER3, HER4, AKT and ERK and the protein expression of Cleaved Caspase-3, Caspase-7 and Parp1. Flow cytometry was used to determine the apoptosis rates and mitochondrial membrane potentials, and the mitochondrial superoxide was detected by the Immunofluorescence. Importantly, we used HPLC-TQ-MS to determine the ratio of Tarloxotinib-E released by Tarloxotinib. Finally, the subcutaneous xenograft mice were used to evaluate the antitumor effect and toxicity of Tarloxotinib in vivo.
Results
Tarloxotinib could be transformed into Tarloxotinib-E by breast cancer cells under hypoxia. Meanwhile, Tarloxotinib-E could effectively inhibit the level of HER family phosphorylation and downstream signaling in HER2-positive breast cancer cells, and superior to Lapatinib and Tucatinib. Mechanistically, Tarloxotinib-E induced apoptosis in HER2-positive breast cancer cells through a ROS-dependent manner, with significant decrease in the potential of mitochondrial membrane and increase in mitochondrial superoxide. During the in vivo experiment, Tarloxotinib significantly inhibited tumor growth in nude mice compared with Lapatinib.
Conclusions
Tarloxotinib released Tarloxotinib-E under hypoxic microenvironment of breast tumors, and inhibited the phosphorylation of HER2 dimers and downstream pathways to induce apoptosis in HER2-positive cells through a ROS-dependent manner. This lays a foundation for the further development of Tarloxotinib in HER2-positive breast cancer.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Nanjing Municipal Science and Technology Bureau Grant the Medical Engineering Cooperation Project No. 202110032.The Second Hospital of Nanjing Grant the Talent Support Program No. RCMS23004 and the High-level Talents Program No. 202302. Key Research Program of Gusu School No. GSKY20220105.The Postgraduate Research and Practice Innovation Program of Jiangsu Province No. KYCX22_1927.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
4P - Spatially resolved transcriptome elucidates bidirectional tertiary lymphoid structure interacts with tumor microenvironment of non-small cell lung cancer
Presenter: Xin Zhao
Session: Poster session 09
5P - Tertiary lymphoid structures (TLS) presence and stromal blood vessels heterogeneity differentially influence recurrence, lymphovascular, and perineural invasion in breast cancer molecular subtypes
Presenter: Andrei Cosma
Session: Poster session 09
6P - Combined single-cell and spatially resolved mapping of the human lymph node ecosystem reveals fundamental principles of lymphoma tissue organization
Presenter: Daniel Hübschmann
Session: Poster session 09
7P - Engineered salmonella blocks cancer metastasis by activating NK cells in an IFN-γ-dependent manner
Presenter: JIANDONG HUANG
Session: Poster session 09
8P - Modulating tumor microenvironment using a VEGF active immunotherapeutic approach in gastrointestinal tumors: Beyond angiogenesis modulation
Presenter: Mónica Bequet-Romero
Session: Poster session 09
9P - Identification of a μCT-based radiomic signature of CD8+ tumour infiltrating lymphocytes in an orthotopic murine model
Presenter: Giulia Mazzaschi
Session: Poster session 09
10P - Cancer cells induce intracellular gap formation in sinusoidal endothelial cells to produce liver metastasis through pro-inflammatory paracrine mechanisms
Presenter: Hoang Truong
Session: Poster session 09
11P - Targeting stromal cells to reverse immune suppression in triple-negative breast cancer
Presenter: Julia Chen
Session: Poster session 09
12P - Immuno-suppressive role of tumour-derived GDF-15 on myeloid cells
Presenter: Christine Schuberth-Wagner
Session: Poster session 09
13P - Disrupting the immunosuppressive tumor microenvironment using genetically engineered macrophages for triple-negative breast cancer therapy
Presenter: Sabrina Traxel
Session: Poster session 09