Abstract 4382
Background
Implementing screening programs for risk populations can reduce lung cancer mortality by detecting the disease at early stages, when surgical intervention or chemotherapy treatment can be conducted with best prognosis. Screening protocols based on Low-Dose CT presents a series of drawbacks and needs complementary methods for improving sensitivity and specificity in the screening procedure. Thermal Liquid Biopsy (TLB) is as a complementary technique that, combined with imaging techniques, may improve the efficacy of the screening method.
Methods
Blood samples from Healthy Controls (HC) and Lung Cancer Patients (LCP) were analyzed with a high sensitivity microcalorimeter VP-DSC (MicroCal – Malvern Panalytical). The data were processed in Origin 7.0 software. The plasma thermograms were analyzed through a multiparametric method developed by our research group. Statistical models allowed classifying the subjects according their serum thermograms.
Results
115 LCP subjects (average age 64.6±8.7, 83.0% men) with broad stage distribution (II: 5%, III: 26%; IV: 69%), smoking status (64% smoking, 7% non-smoking), histology distribution (37% adenocarcinoma, 29% squamous, 30% small cell) were compared to 119 HC subjects homogeneously distributed from a blood bank. TLB parameters obtained showed statistical differences between HC and LCP groups. Different statistical models were applied in order to establish the optimal TLB output, which is able to classify subjects according to their TLB thermogram: 92% success rate, 90% specificity, and 94% sensitivity (i.e., diagnostic odds ratio of 140).
Conclusions
High positive association between clinical groups and TLB multiparametric model offers advantages over current diagnosis techniques (LDCT imaging), providing a powerful diagnostic approach with a minimally-invasive, low-risk, low-cost clinical test for LCP. Future promising applications, such as screening programs, could be developed from TLB.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Instituto Carlos III (Spain).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
5517 - Molecular fingerprinting in breast cancer (BC) screening using Quantum Optics (QO) technology combined with an artificial intelligence (AI) approach applying the concept of “molecular profiles at n variables (MPnV)”: a prospective pilot study.
Presenter: Jean-Marc Nabholtz
Session: Poster Display session 3
Resources:
Abstract
2152 - Inferring the correlation between incidence rates of melanoma and the average tumor-specific epitope binding ability of HLA class I molecules in different populations
Presenter: Istvan Miklos
Session: Poster Display session 3
Resources:
Abstract
2465 - Towards a screening test for cancer by circulating DNA analysis
Presenter: Rita Tanos
Session: Poster Display session 3
Resources:
Abstract
3788 - Evaluation of a successful launch of the MammaPrint and BluePrint NGS kit
Presenter: Leonie Delahaye
Session: Poster Display session 3
Resources:
Abstract
3863 - Analysis of prognostic factors on overall survival in elderly women treated for early breast cancer using data mining and machine learning
Presenter: Pierre Heudel
Session: Poster Display session 3
Resources:
Abstract
1993 - Circulating tumor cell detection in epithelial ovarian cancer using dual-component antibodies targeting EpCAM and FRα
Presenter: Na Li
Session: Poster Display session 3
Resources:
Abstract
4281 - CEUS of the breast: Is it feasible in improved performance of BI-RADS evaluation of critical breast lesions?——A multi-center prospective study in China
Presenter: Jun Luo
Session: Poster Display session 3
Resources:
Abstract
2268 - Classification of abnormal findings on ring-type dedicated breast PET for detecting breast cancer
Presenter: Shinsuke Sasada
Session: Poster Display session 3
Resources:
Abstract
4035 - Prediction of benign and malignant breast masses using digital mammograms texture features
Presenter: Cui Yanhua
Session: Poster Display session 3
Resources:
Abstract
5678 - Nanomaterials Augmented LDI-TOF-MS for Hepatocellular Carcinoma Diagnosis and Classification
Presenter: Jian Zhou
Session: Poster Display session 3
Resources:
Abstract