Abstract 3577
Background
Triple-negative breast cancer (TNBC) is the most aggressive among breast cancer subtypes, as these tumors frequently develop resistance to the treatment used. External signals provided by the surrounding tumor microenvironment (TM), which in mammary tumors is mainly constituted by adipose tissue (AT), control this resistance. Therefore, therapies that targets not only the cancer bulk but also its surrounding TM may be more effective. Preliminary in vitro and in vivo studies using mesenchymal stem cells from TNBC patient’s AT (MSCTNBC) showed how a conditioned medium (CM) prepared from MSCTNBC (MSCTNBC-CM) promoted tumorigenicity, invasion, and chemoresistance. In the present work, molecular mechanism will be investigated to identify novel druggable targets in TNBC.
Methods
TNBC cells (MDA-MB-231, BT549, and HS578T) were exposed to MSCTNBC-CM. The activation profile of tyrosine kinase receptors (RTKs) was evaluated using a commercial array. The effect of the inhibitors in the absence and presence of MSCTNBC-CM on TNBC cells recurrence potential, invasion, and cell death were evaluated in vitro through clonogenic, matrix invasion, and flow cytometry assays. Impact on tumour growth was evaluated in a MSCTNBC-TNBC preclinical model (BALB-nu mice).
Results
RTKs activation profile in response to MSCTNBC-CM revealed that TM secreted factors activates Src protein family (SFK) in TNBC. The use of the SFK inhibitor Dasatinib, both in vitro and in vivo, showed a marked reduction of invasion and recurrence potential, an induction of cell death, and a lower of tumour growth.
Conclusions
In this study, we describe SFK as mediators in the communication within the tumour adipose niche and provides fundamental information to understand TNBC progression, as well as its behavior in response to chemotherapy. The specific blockade of the SFK signaling pathway with Dasatinib can interrupt this communication and revert TM protective effect, resulting in death and smaller tumour size. Our results open the gate to the development of new strategies targeting TM to treat TNBC patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Diputación de Albacete.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
4955 - XAF1 Enhances Temozolomide Induced Autophagic Cell Death through AMPK signaling pathway
Presenter: Mingoo Lee
Session: Poster Display session 1
Resources:
Abstract
5616 - The effect of cortisol on methylation patterns in breast cancer cell lines
Presenter: Haya Intabli
Session: Poster Display session 1
Resources:
Abstract
4649 - Global and sex-specific epigenome-wide association studies for the identification of the main methylated loci related to smoking in a Mediterranean population
Presenter: Judith Begona Ramirez Sabio
Session: Poster Display session 1
Resources:
Abstract
4984 - Whole transcriptomics analyses of mimicking Circulating Tumor Cells (CTCs) by single-cell RNA sequencing (scRNAseq)
Presenter: Jessica Garcia
Session: Poster Display session 1
Resources:
Abstract
5926 - Comparison of enzymatic- and bisulfite conversion to map the plasma cell-free methylome in cancer
Presenter: Nicole Lambert
Session: Poster Display session 1
Resources:
Abstract
5454 - Detection of low mutations in hepatocellular carcinoma by using circulating tumor DNA
Presenter: Esl Kim
Session: Poster Display session 1
Resources:
Abstract
4428 - Variants in the JAK1 and JAK2 genes in the risk and prognosis of patients with cutaneous melanoma
Presenter: Bruna Carvalho
Session: Poster Display session 1
Resources:
Abstract
4409 - P-Rex1 expression in breast cancer patients.
Presenter: Angela Lara Montero
Session: Poster Display session 1
Resources:
Abstract
4185 - Modulation of Risk of Cutaneous Melanoma Patients by Variants in STAT3 Gene and Functional Analysis
Presenter: Gabriela Gomez
Session: Poster Display session 1
Resources:
Abstract
3909 - Spectrum of pathogenic germline mutations in Chinese lung cancer patients through next-generation sequencing
Presenter: Ying Huang
Session: Poster Display session 1
Resources:
Abstract