Abstract 5236
Background
Poly-ADP-Ribose Polymerase inhibitors (PARPi) constitute a class of drugs that interfere with DNA damage response and are already available or in current advanced development either alone or in combination with DNA damaging agents such as chemotherapeutics. Some features of colorectal cancer (CRC), like microsatellite instability and MAPK-induced replication stress, make it a good candidate for exploring the combination of PARPi with chemotherapeutics. Previous data have evidenced how PARPi/chemotherapy combinations are effective in various cancers, albeit early clinical trials showed only modest activity in unselected CRC patients.
Methods
We tested the activity of the PARPi niraparib (MK-4827) used alone or in combination with either 5-fluorouracil, oxaliplatin or irinotecan (SN38) in a panel of 12 CRC cell lines with known molecular characteristics. Proliferation, cell cycle and apoptosis assays were performed. A correlation between combination synergism and the following molecular features was obtained: RAS/BRAF mutation, HER2 amplification, microsatellite status, mutational and transcriptomic profiles from the Cancer Cell Line Encyclopedia (CCLE) database. Mice xenografts using the most representative cell lines are ongoing. Patient-derived 3D primary cultures (PDPCs) are being used to confirm the data obtained in vitro.
Results
Niraparib is synergistic with the investigated chemotherapeutics in most of the cell lines explored. The best candidate for combination is SN38, which is synergistic in 9/12 cell lines analysed. MAPK activation, microsatellite instability (MSI) and mutations in genes involved in homologous recombination repair (HRR) are good predictors of synergism. Transcriptomic analysis is ongoing. Mice xenografts and PDPCs models are in progress and will be presented at the Congress.
Conclusions
The combination of niraparib and irinotecan/SN38 is effective in an in vitro model of CRC. MAPK activation, MSI and mutation in HRR-associated genes are predictors of synergism and are currently being validated in in vivo and ex vivo models. These findings could lead to a better patient selection for this combination in CRC.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Università della Campania Luigi Vanvitelli; Associazione Italiana per la Ricerca sul Cancro (AIRC).
Disclosure
P.P. Vitiello: Research grant/Funding (institution), Travel/Accommodation/Expenses: Amgen; Research grant/Funding (institution): Bayer; Research grant/Funding (institution): Ipsen; Research grant/Funding (institution): Merck; Research grant/Funding (institution): Roche; Travel/Accommodation/Expenses: BMS; Travel/Accommodation/Expenses: Sanofi-Genzyme. D. Ciardiello: Travel/Accommodation/Expenses: Sanofi. C. Cardone: Research grant/Funding (institution): Ipsen; Research grant/Funding (institution): Roche; Research grant/Funding (institution): Merck; Research grant/Funding (institution): Amgen; Research grant/Funding (institution): Bayer. G. Martini: Research grant/Funding (self): Amgen. C. Borrelli: Travel/Accommodation/Expenses: BMS. L. Poliero: Travel/Accommodation/Expenses: BMS. V. De Falco: Travel/Accommodation/Expenses: BMS; Travel/Accommodation/Expenses: Novartis. E.F. Giunta: Travel/Accommodation/Expenses: Novartis; Travel/Accommodation/Expenses: BMS. M. Terminiello: Travel/Accommodation/Expenses: BMS. T. Troiani: Research grant/Funding (institution): Roche; Research grant/Funding (institution): Merck; Research grant/Funding (institution): Bayer; Travel/Accommodation/Expenses: Servier; Travel/Accommodation/Expenses: Amgen; Travel/Accommodation/Expenses: Sanofi; Travel/Accommodation/Expenses: Novartis. F. Ciardiello: Advisory/Consultancy, Research grant/Funding (institution): Merck; Advisory/Consultancy, Research grant/Funding (institution): Bayer; Advisory/Consultancy, Research grant/Funding (institution): Amgen; Advisory/Consultancy, Research grant/Funding (institution): Roche; Advisory/Consultancy: Servier; Advisory/Consultancy: Pfizer; Research grant/Funding (institution): Ipsen. E. Martinelli: Honoraria (self), Research grant/Funding (institution): Amgen; Honoraria (self), Research grant/Funding (institution): Bayer; Honoraria (self), Research grant/Funding (institution): Merck; Research grant/Funding (institution): Roche; Honoraria (self), Research grant/Funding (institution): Servier. All other authors have declared no conflicts of interest.
Resources from the same session
3909 - Spectrum of pathogenic germline mutations in Chinese lung cancer patients through next-generation sequencing
Presenter: Ying Huang
Session: Poster Display session 1
Resources:
Abstract
3061 - Poor prognostic impact of NTRK2 gene variation in Esophageal Squamous Cell Carcinoma
Presenter: Ye Chen
Session: Poster Display session 1
Resources:
Abstract
4735 - Mutation profile of Tibetan lung cancer revealed by Whole Exome Sequencing
Presenter: Xin Wang
Session: Poster Display session 1
Resources:
Abstract
4051 - cRGDfK (cRGD) conjugated Pyropheophor¬bide-a (Pyro), a new tumor photodynamic agent, is highly accumulated and specific in tumor cell killing
Presenter: Fengwei Wang
Session: Poster Display session 1
Resources:
Abstract
859 - The expression of MMR, CD133 and the presence of p53 wt predict the response to Cabazitaxel in malignant neural tumors cell lines.
Presenter: Kevin Doello
Session: Poster Display session 1
Resources:
Abstract
2497 - IKS01, a next generation antibody drug conjugate (ADC) designed to be efficacious in tumors with low and moderate levels of folate receptor expression
Presenter: Jenny Thirlway
Session: Poster Display session 1
Resources:
Abstract
1636 - Novel Non-Camptothecin Compounds with Antiproliferative Activities against Breast Cancer Cells
Presenter: Wen-shan Li
Session: Poster Display session 1
Resources:
Abstract
3443 - Sensitization of estrogen receptor-positive breast cancer cells to tamoxifen by novel epi-oligomycin A
Presenter: Margarita Yastrebova
Session: Poster Display session 1
Resources:
Abstract
840 - Autophagy inhibition enhances leflunomide-induced cytotoxicity in human bladder cancer cells
Presenter: Li Cheng
Session: Poster Display session 1
Resources:
Abstract
1735 - mTOR inhibition in the treatment of resistant breast cancer
Presenter: María Rodriguez
Session: Poster Display session 1
Resources:
Abstract