Abstract 840
Background
Dihydroorotate dehydrogenase (DHODH) is one of the essential enzymes in the de novo biosynthesis of pyrimidine and might be a potential therapeutic target for cancer suppress. The anti-proliferative and apoptosis-inducing effects of leflunomide, a potent DHODH blocker, have been demonstrated in multiple human cancers. This study aims to investigate the cytostatic effects of leflunomide on bladder cancer and the involved mechanism.
Methods
Two human bladder cancer cell lines, T24 and 5637, were used in this study. After incubation with varied doses of leflunomide, the cell viability, apoptosis and cell cycle assay were determined with MTS, cell colony assay and flow cytometry. Western blot was used to evaluate the expression changes of cleaved-PARP, proteins involved in Akt/mTOR/P70S6K signaling pathway and cell autophagy pathway. AVO stain assay was performed to detect the autophagosome. Moreover, the cytostatic effects of leflunomide were further investigated after the modulation of cell autophagy with autophagy agonist rapamycin and inhibitor chloroquine.
Results
Our data demonstrated that leflunomide markedly inhibited the growth of both bladder cancer cells via inducing cell apoptosis and cell cycle arrest in S phase in a time- and dose-dependent manner. After leflunomide treatment, the phosphorylation levels of Akt, mTOR and p70S6K proteins in both cells were significantly down-regulated. Furthermore, AVO stain assay revealed the decline of autophagosome under the incubation of leflunomide. Modulation of autophagy with rapamycin and chloroquine observably attenuated and enhanced the cytostatic effects of leflunomide, respectively.
Conclusions
Leflunomide significantly reduced the cell viability of bladder cancer cells via Akt/mTOR/P70S6K signaling pathway. In addition, cell autophagy was demonstrated to be involved, combination leflunomide with autophagy modifier exerted enhanced antitumor effects in bladder cancer, which offered novel ideas for bladder cancer treatment.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The author.
Funding
Has not received any funding.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
1757 - Development of chimeric antigenic receptor (CAR) against VEGFR2 for solid tumor treatment
Presenter: Li-Shuang Ai
Session: Poster Display session 1
Resources:
Abstract
4156 - Triple blockade of EGFR, MEK and PD-L1 as effective antitumor treatment in PD-L1 overexpressing, MEK inhibitor resistant colon cancer cells.
Presenter: Nunzia Matrone
Session: Poster Display session 1
Resources:
Abstract
2949 - EGFR-mediated PD-L1 upregulation in HER2+ breast cancer (BC) cell line models
Presenter: Nicola Gaynor
Session: Poster Display session 1
Resources:
Abstract
4270 - The impact of cortisol on immune cells and its effect on cancer-immune cells co-culture in a 3D spheroid of ovarian cancer
Presenter: Maysa Al-natsheh
Session: Poster Display session 1
Resources:
Abstract
1568 - Application of sonoporation to increase anticancer drug efficacy in 2D and 3D NSCLC cell cultures
Presenter: Vilma Petrikaite
Session: Poster Display session 1
Resources:
Abstract
5400 - Tr1-like cells in human peripheral blood are part of the T effector memory pool and are preferentially stimulated via CD55
Presenter: Iniobong Charles
Session: Poster Display session 1
Resources:
Abstract
5817 - Functional analysis of tumor infiltrating lymphocytes in triple negative breast cancer focusing on granzyme B
Presenter: Hitomi Kawaji
Session: Poster Display session 1
Resources:
Abstract
2287 - Aberrant glycolysis associates with inflammatory tumor microenvironment and promotes metastasis in triple-negative breast cancer
Presenter: Chengwei Lin
Session: Poster Display session 1
Resources:
Abstract
735 - Anti-cancer effects of differentiation-inducing factor-1 in triple negative breast cancer.
Presenter: Fumi Tetsuo
Session: Poster Display session 1
Resources:
Abstract
2105 - The Inhibitory Effect in Oral Squamous Cell Carcinoma Cells by Knocking down Matrix Metalloproteinase 9
Presenter: Xinyan Zhang
Session: Poster Display session 1
Resources:
Abstract