Abstract 2752
Background
The tumor immune microenvironment (TIME) may hold critical information for developing and optimizing immuno-therapeutic approaches, identifying predictive signatures, and selecting the most adequate treatment option for a given patient. Tissue phenomics facilitates the use of the TIME to derive predictive conclusions. The visual information content in histological sections is systematically converted into numerical readouts using artificial intelligence (AI). Resulting quantitative descriptors, phenes, of detected structures are mined to yield local expression profiles; this spatial data aggregation detects categories of local environments, which are correlated to clinical, genomic or other -omics data to identify relevant cohort subpopulations.
Methods
Exploration of this technology is illustrated by various examples on different cohorts of NSCLC patients: A categorization of n = 45 non-IO-treated patients with respect to local immune profiles learned via AI in a hypothesis-free scenario was examined. A deep learning based PD-L1 scoring was compared to 3 pathologist’s scoring on n = 40 durvalumab-treated patients using the cutoff 25% of tumor cells staining positive for PD-L1 at any intensity. The predictive value of a digital signature combining cell densities of PD-L1 and CD8+ was tested on n = 163 durvalumab-treated and n = 199 non-IO-treated samples.
Results
A categorization into biologically interpretable classes learned by AI illustrates the exploratory benefits of tissue phenomics. The scoring algorithm could reproduce survival prediction when compared to pathologist’s visual scoring.The digital signature suggests a predictive value for patient stratification into responders and non-responders for durvalumab, while no prognostic value could be found on the non-IO-treated patients. Kaplan-Meier plots for the 2 latter examples will be presented in the poster.
Conclusions
Tissue phenomics facilitates the quantitative assessment of the tumor geography and may lead to improved tools for biomarker analysis and diagnosis. Analysis on larger and prospective datasets are to be conducted in the future to strengthen the findings.
Clinical trial identification
All of these results have been generated retrospectively from samples unrelated to a trial or related to the durvalumab-trial NCT01693562.
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Boehringer Ingelheim, MedImmune, Definiens AG.
Disclosure
M. Groher: Full / Part-time employment: Definiens AG. J. Zimmermann: Shareholder / Stockholder / Stock options: AstraZeneca; Full / Part-time employment: Definiens AG. H. Musa: Full / Part-time employment: Boehringer Ingelheim. A. Ackermann: Full / Part-time employment: Boehringer Ingelheim. M. Surace: Shareholder / Stockholder / Stock options, Full / Part-time employment: AstraZeneca. J. Rodriguez-Canales: Shareholder / Stockholder / Stock options, Full / Part-time employment: AstraZeneca. M. Rebelatto: Shareholder / Stackeholder / Stock options: AstraZenec LLC; Full / Part-time employment: AstraZeneca LLC. K. Steele: Shareholder / Stockholder / Stock options, Full / Part-time employment: AstraZeneca; Spouse / Financial dependant: Arcellx LLC. A. Kapil: Full / Part-time employment: Definiens AG. N. Brieu: Shareholder / Stockholder / Stock options, Full / Part-time employment: Definiens AG. L. Rognoni: Full / Part-time employment: Definiens AG. F. Segerer: Full / Part-time employment: Definiens AG. A. Spitzmüller: Full / Part-time employment: Definiens AG. T. Tan: Full / Part-time employment: Definiens AG. A. Schäpe: Full / Part-time employment: Definiens AG. G. Schmidt: Full / Part-time employment: Definiens AG; Shareholder / Stockholder / Stock options: AstraZeneca.
Resources from the same session
5007 - Functional systemic CD4 immunity is required for clinical responses to PD-L1/PD-1 blockade therapy
Presenter: Miren Zuazo
Session: Poster Display session 3
Resources:
Abstract
5760 - Landscape of PD-L1 expression status in Chinese solid tumor patients.
Presenter: Yi Zhong
Session: Poster Display session 3
Resources:
Abstract
3733 - Anti-cancer and immunomodulatory effects of cobimetinib in triple negative breast cancer
Presenter: Chun-Yu Liu
Session: Poster Display session 3
Resources:
Abstract
4426 - Differential expression of immunoregulatory molecules and highly-associated cancer genes may provide novel insights into strategic trial design for therapeutics
Presenter: Jacob Adashek
Session: Poster Display session 3
Resources:
Abstract
5713 - Immune competent somatic mosaic model of colorectal cancer
Presenter: Stefania Napolitano
Session: Poster Display session 3
Resources:
Abstract
1898 - Genomic correlates of response to anti-PDL1 Atezolizumab in non-small-cell lung cancer OAK and POPLAR trials
Presenter: Hari Singhal
Session: Poster Display session 3
Resources:
Abstract
3246 - Erdafitinib (erda) versus available therapies in advanced urothelial cancer: A matching adjusted indirect comparison
Presenter: Yohann Loriot
Session: Poster Display session 3
Resources:
Abstract
3311 - High level of activity of Nivolumab anti-PD-1 immunotherapy and favorable outcome in metastatic/refractory MSI-H non-colorectal cancer: Results of the MSI cohort from the French AcSé program
Presenter: Christophe Tournigand
Session: Poster Display session 3
Resources:
Abstract
2314 - TP53 and ATM Co-mutation Predicts Response to Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer
Presenter: Yu Chen
Session: Poster Display session 3
Resources:
Abstract
4692 - Immune cell biomarkers on neo-adjuvant chemo-immunotherapy treatment for resectable stage IIIA NSCLC patients
Presenter: Raquel Laza-Briviesca
Session: Poster Display session 3
Resources:
Abstract