Abstract 2752
Background
The tumor immune microenvironment (TIME) may hold critical information for developing and optimizing immuno-therapeutic approaches, identifying predictive signatures, and selecting the most adequate treatment option for a given patient. Tissue phenomics facilitates the use of the TIME to derive predictive conclusions. The visual information content in histological sections is systematically converted into numerical readouts using artificial intelligence (AI). Resulting quantitative descriptors, phenes, of detected structures are mined to yield local expression profiles; this spatial data aggregation detects categories of local environments, which are correlated to clinical, genomic or other -omics data to identify relevant cohort subpopulations.
Methods
Exploration of this technology is illustrated by various examples on different cohorts of NSCLC patients: A categorization of n = 45 non-IO-treated patients with respect to local immune profiles learned via AI in a hypothesis-free scenario was examined. A deep learning based PD-L1 scoring was compared to 3 pathologist’s scoring on n = 40 durvalumab-treated patients using the cutoff 25% of tumor cells staining positive for PD-L1 at any intensity. The predictive value of a digital signature combining cell densities of PD-L1 and CD8+ was tested on n = 163 durvalumab-treated and n = 199 non-IO-treated samples.
Results
A categorization into biologically interpretable classes learned by AI illustrates the exploratory benefits of tissue phenomics. The scoring algorithm could reproduce survival prediction when compared to pathologist’s visual scoring.The digital signature suggests a predictive value for patient stratification into responders and non-responders for durvalumab, while no prognostic value could be found on the non-IO-treated patients. Kaplan-Meier plots for the 2 latter examples will be presented in the poster.
Conclusions
Tissue phenomics facilitates the quantitative assessment of the tumor geography and may lead to improved tools for biomarker analysis and diagnosis. Analysis on larger and prospective datasets are to be conducted in the future to strengthen the findings.
Clinical trial identification
All of these results have been generated retrospectively from samples unrelated to a trial or related to the durvalumab-trial NCT01693562.
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Boehringer Ingelheim, MedImmune, Definiens AG.
Disclosure
M. Groher: Full / Part-time employment: Definiens AG. J. Zimmermann: Shareholder / Stockholder / Stock options: AstraZeneca; Full / Part-time employment: Definiens AG. H. Musa: Full / Part-time employment: Boehringer Ingelheim. A. Ackermann: Full / Part-time employment: Boehringer Ingelheim. M. Surace: Shareholder / Stockholder / Stock options, Full / Part-time employment: AstraZeneca. J. Rodriguez-Canales: Shareholder / Stockholder / Stock options, Full / Part-time employment: AstraZeneca. M. Rebelatto: Shareholder / Stackeholder / Stock options: AstraZenec LLC; Full / Part-time employment: AstraZeneca LLC. K. Steele: Shareholder / Stockholder / Stock options, Full / Part-time employment: AstraZeneca; Spouse / Financial dependant: Arcellx LLC. A. Kapil: Full / Part-time employment: Definiens AG. N. Brieu: Shareholder / Stockholder / Stock options, Full / Part-time employment: Definiens AG. L. Rognoni: Full / Part-time employment: Definiens AG. F. Segerer: Full / Part-time employment: Definiens AG. A. Spitzmüller: Full / Part-time employment: Definiens AG. T. Tan: Full / Part-time employment: Definiens AG. A. Schäpe: Full / Part-time employment: Definiens AG. G. Schmidt: Full / Part-time employment: Definiens AG; Shareholder / Stockholder / Stock options: AstraZeneca.
Resources from the same session
1122 - Platelets from metastatic cancer patients have increased aggregation and activation
Presenter: Meera Chauhan
Session: Poster Display session 3
Resources:
Abstract
2671 - Luminal B breast cancer prognosis prediction by comprehensive analysis of Homeobox genes
Presenter: Ayako Nakashoji
Session: Poster Display session 3
Resources:
Abstract
2650 - Long non-coding RNA E2F4as promotes tumor progression and predicts patient prognosis in human ovarian cancer
Presenter: Sun-Ae Park
Session: Poster Display session 3
Resources:
Abstract
1462 - FGF19 promotes esophageal squamous cell carcinoma progression by inhibiting autophagy
Presenter: Lisha Ying
Session: Poster Display session 3
Resources:
Abstract
5787 - Proof of concept on the role of ex vivo lung cancer spheroids, cytokines expression and PBMCs profiling in monitoring disease history and response to treatments.
Presenter: Raimondo Di Liello
Session: Poster Display session 3
Resources:
Abstract
5253 - Circulating microRNAs related to DNA damage response as predictors of survival in metastatic non- small cell lung cancer patients treated with platinum-based chemotherapy
Presenter: Dimitris Mavroudis
Session: Poster Display session 3
Resources:
Abstract
5286 - Prognostic value of CTCs in advanced NSCLC patients treated with platinum-based chemotherapy
Presenter: Silvia Calabuig-Fariñas
Session: Poster Display session 3
Resources:
Abstract
5781 - Exosomes in NSCLC as a source of biomarkers
Presenter: Elena Duréndez
Session: Poster Display session 3
Resources:
Abstract
1447 - The role of Pim-1 in the development and progression of papillary thyroid carcinoma
Presenter: Xin Zhu
Session: Poster Display session 3
Resources:
Abstract
1323 - Development and Validation of a RNA-Seq Based Prognostic Signature in Neuroblastoma
Presenter: Jian-Guo Zhou
Session: Poster Display session 3
Resources:
Abstract