Abstract 2752
Background
The tumor immune microenvironment (TIME) may hold critical information for developing and optimizing immuno-therapeutic approaches, identifying predictive signatures, and selecting the most adequate treatment option for a given patient. Tissue phenomics facilitates the use of the TIME to derive predictive conclusions. The visual information content in histological sections is systematically converted into numerical readouts using artificial intelligence (AI). Resulting quantitative descriptors, phenes, of detected structures are mined to yield local expression profiles; this spatial data aggregation detects categories of local environments, which are correlated to clinical, genomic or other -omics data to identify relevant cohort subpopulations.
Methods
Exploration of this technology is illustrated by various examples on different cohorts of NSCLC patients: A categorization of n = 45 non-IO-treated patients with respect to local immune profiles learned via AI in a hypothesis-free scenario was examined. A deep learning based PD-L1 scoring was compared to 3 pathologist’s scoring on n = 40 durvalumab-treated patients using the cutoff 25% of tumor cells staining positive for PD-L1 at any intensity. The predictive value of a digital signature combining cell densities of PD-L1 and CD8+ was tested on n = 163 durvalumab-treated and n = 199 non-IO-treated samples.
Results
A categorization into biologically interpretable classes learned by AI illustrates the exploratory benefits of tissue phenomics. The scoring algorithm could reproduce survival prediction when compared to pathologist’s visual scoring.The digital signature suggests a predictive value for patient stratification into responders and non-responders for durvalumab, while no prognostic value could be found on the non-IO-treated patients. Kaplan-Meier plots for the 2 latter examples will be presented in the poster.
Conclusions
Tissue phenomics facilitates the quantitative assessment of the tumor geography and may lead to improved tools for biomarker analysis and diagnosis. Analysis on larger and prospective datasets are to be conducted in the future to strengthen the findings.
Clinical trial identification
All of these results have been generated retrospectively from samples unrelated to a trial or related to the durvalumab-trial NCT01693562.
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Boehringer Ingelheim, MedImmune, Definiens AG.
Disclosure
M. Groher: Full / Part-time employment: Definiens AG. J. Zimmermann: Shareholder / Stockholder / Stock options: AstraZeneca; Full / Part-time employment: Definiens AG. H. Musa: Full / Part-time employment: Boehringer Ingelheim. A. Ackermann: Full / Part-time employment: Boehringer Ingelheim. M. Surace: Shareholder / Stockholder / Stock options, Full / Part-time employment: AstraZeneca. J. Rodriguez-Canales: Shareholder / Stockholder / Stock options, Full / Part-time employment: AstraZeneca. M. Rebelatto: Shareholder / Stackeholder / Stock options: AstraZenec LLC; Full / Part-time employment: AstraZeneca LLC. K. Steele: Shareholder / Stockholder / Stock options, Full / Part-time employment: AstraZeneca; Spouse / Financial dependant: Arcellx LLC. A. Kapil: Full / Part-time employment: Definiens AG. N. Brieu: Shareholder / Stockholder / Stock options, Full / Part-time employment: Definiens AG. L. Rognoni: Full / Part-time employment: Definiens AG. F. Segerer: Full / Part-time employment: Definiens AG. A. Spitzmüller: Full / Part-time employment: Definiens AG. T. Tan: Full / Part-time employment: Definiens AG. A. Schäpe: Full / Part-time employment: Definiens AG. G. Schmidt: Full / Part-time employment: Definiens AG; Shareholder / Stockholder / Stock options: AstraZeneca.
Resources from the same session
4096 - Patient experience and use of an intervention combining nurse-led telephone and technologies for the monitoring of oral cancer medication
Presenter: Marie Ferrua
Session: Poster Display session 3
Resources:
Abstract
6042 - Harnessing nurse leadership to implement a project for electronic scheduling of chemotherapy
Presenter: Emma Masters
Session: Poster Display session 3
Resources:
Abstract
3123 - Turkish Cancer Patients’ Preference for Information and Communication Technologies
Presenter: Esra ildes
Session: Poster Display session 3
Resources:
Abstract
6062 - Unmet Needs in Oncology Research related to radiological response evaluation: a multi-center survey in three European countries
Presenter: Sophie Nisse Durgeat
Session: Poster Display session 3
Resources:
Abstract
6109 - A program implementation to facilitate intraoperative brachytherapy between hospitals
Presenter: Marc Garcia Casellas
Session: Poster Display session 3
Resources:
Abstract
1772 - Using Mobile-Based Health Care Applications Outcomes: Mini Systematic Review
Presenter: Aydanur Aydin
Session: Poster Display session 3
Resources:
Abstract
2792 - Evaluation of an education program for cancer patients receiving chemotherapy
Presenter: Iraqi Amina
Session: Poster Display session 3
Resources:
Abstract
3715 - iGestSaúde: Application for self-management of symptoms during chemotherapy treatment
Presenter: Bruno Magalhaes
Session: Poster Display session 3
Resources:
Abstract
3854 - Palliative care requirements of cancer patients and investigation of knowledge and expectations related to palliative care of the patients and their families
Presenter: Ozlem Topkaya
Session: Poster Display session 3
Resources:
Abstract
4997 - Hospice care, what to expect? An exploration of the expectation of future hospice patients
Presenter: Merel van Klinken
Session: Poster Display session 3
Resources:
Abstract