Abstract 2485
Background
Uterine sarcoma (US) is a highly malignant cancer with poor prognosis and high mortality. This study focused on identification of RNA-Seqexpressionsignature for prognosis prediction of Uterine Sarcoma.
Methods
We obtained RNA-Seqexpression profiles from The Cancer Genome Atlas (TCGA) database and differential expressed genes (DEGs) were identified between US tissues and normal tissues. Univariate Cox proportional hazards regression analysis was performed to identify Prognosis associated DEGscorrelated with survival of US patients.The RNA-Seqbased prognostic signature was identified by least absolute shrinkage and selection operator (LASSO) Cox model. The cohort was randomly divided into training and testing groups. Thebiological pathway and processof putative RNA targets was also analyzed by bioinformatics.
Results
This study identified a RNA-Seq signature based on 11 genes, AP000320.1, HNRNPA1P33, RPL21P10, AC067773.1, AC011933.3, STX19, AC091133.4, HIST1H3A, AC004988.1, AL356585.1 and HNRNPA3P1. In the training group, the median OS in the high-risk and low-risk groups were 13.7 vs 88.1 months (HR, 0.204, 95% CI, 0.08589 - 0.4846; P < 0.0001), respectively. In the testing group, the median OS in the high-risk and low-risk groups were 11.9 vs 67.2 months (HR, 0.04315, 95% CI, 0.004845 - 0.3842; P < 0.0001) respectively. Genes in the model were put into gene ontology biological process enrichment and Kyoto Encyclopedia of Genes and Genomes signaling pathways analysis, which suggested that these genes might contribute to cancer-associated processes such as the nuclear nucleosome and DNA packaging complex.
Conclusions
This 11-genebased prognostic signature may improve prognosis prediction of US.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Linguistic correction
Resources from the same session
4732 - Progesterone Receptor Isoform Ratio Dictates Antiprogestins/Progestins Effects on Metastatic Breast Cancer Models
Presenter: Maria Abascal
Session: Poster Display session 2
Resources:
Abstract
5737 - PAM50 and CGH-array genomic characterization of HER2-Equivocal Breast Cancers defined by the 2018 ASCO/CAP recommendations.
Presenter: Carine Ngo
Session: Poster Display session 2
Resources:
Abstract
1096 - OncotypeDX® predictive nomogram for recurrence score output: a machine learning system based on quantitative immunochemistry analysis - ADAPTED01
Presenter: Fabio Marazzi
Session: Poster Display session 2
Resources:
Abstract
5426 - Geriatric parameters predict both disease-related and patient-reported outcomes in older patients with breast cancer
Presenter: Willeke van der Plas-Krijgsman
Session: Poster Display session 2
Resources:
Abstract
5865 - Patients with a 21-gene assay in South East London differ from the TAILORx trial population
Presenter: Charalampos Gousis
Session: Poster Display session 2
Resources:
Abstract
1312 - Predictive tools in adjuvant breast cancer – what is the standard of evidence supporting their utility? A literature review examining validation of Adjuvant!, Cancermath and NHS Predict
Presenter: Alice Loft
Session: Poster Display session 2
Resources:
Abstract
2445 - Oncologic outcome of invasive lobular carcinoma: Is it different from that of invasive ductal carcinoma?
Presenter: Hee Jun Choi
Session: Poster Display session 2
Resources:
Abstract
2476 - Pathologic response and survival efficacy in patients with initial nodal involvement after neoadjuvant chemotherapy in early breast cancer
Presenter: SERAFIN MORALES Murillo
Session: Poster Display session 2
Resources:
Abstract
3761 - Chemotherapy-induced amenorrhea: prognostic impact on premenopausal Egyptian patients with breast cancer
Presenter: Khaled Abdel Karim
Session: Poster Display session 2
Resources:
Abstract
4687 - Predicting the presence of breast cancer using circulating small RNA in the serum
Presenter: Yumiko Koi
Session: Poster Display session 2
Resources:
Abstract