Abstract 1833
Background
Although the personalized medicine has always focused on the genomic or proteomic characterization of tumor, medical imaging is still one of the major factors to guide therapy and to monitor the progression of the tumor. Radiomics is an emerging field that converts the medical image data into the mineable quantitative features via the automatically algorithms, and can server as a bridge between medical image, genomics and clinical-parameters. Serval studies have demonstrated that the radiomic-based model can predict outcome of RCC, but the correlation between radiomic features and histological subtypes of RCC is still unknown. The aim of this letter is to focus on the ability of radiomics to identify the histological subtypes and metastasis of RCC.
Methods
This study included Forty-four patients diagnosed with renal tumor. For each renal lesion, The CT images of volume of interest (VOI) were obtained semi-automatically by two experienced nuclear medicine physician, 85 texture features were extracted from each VOI using the first-order statistics features, Shape Based Features, Gray Level Neighboring Gray Level Dependence Matrix and Neighboring Gray Tone Difference Matrix.
Results
To investigate the value of radiomic features to capture phenotypic differences of RCC, we performed Unsupervised Clustering of patients with similar radiomic expression patterns. We analyzed the two main clusters of patients with clinical parameters, and found that the tumor clusters were statistically and significantly associated with primary tumor stage (P < 0.001), M-stage (P = 0.049) and benign (P = 0.037), wherein high T-stages, M-stage and tumor group showed in cluster II. RCC histology and N-stage (lymph-node) did not reach statistical significance for their association with the radiomic expression patterns (P = 0.165, 0.361, respectively). In addition, we analyzed the overall survival (OS) of the each radiomic features, and showed that P25, IMC1 and IMC2 were associated with OS (P = 0.002, 0.002, 0.016, respectively, log-rank test).
Conclusions
The radiomic features from medical images could be helpful in deciphering T-stages, metastasis and benign of RCC and may have potential as imaging biomarker for prediction of RCC overall survival.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Zhejiang Cancer Hospital.
Funding
National Natural Science Foundation of China (No 81402117, 81671775), Natural Science Foundation of Zhejiang Province (No LY17H160043) and Qianjiang talent plan of Zhejiang Province (No QJD1602025).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
2494 - CAR-T Nursing Education at a UK Specialist Cancer Hospital
Presenter: Rose Ellard
Session: Poster Display session 3
Resources:
Abstract
2438 - Professional Quality of Life, Perceived Stress and Psychological Resistance Levels of Oncology-Hematology Nurses and the Factors Affecting
Presenter: Tugba Pehlivan
Session: Poster Display session 3
Resources:
Abstract
3541 - Representation of cancer survivors’ preferences in policies for supportive care: Implications for oncology nursing
Presenter: Samantha Mayo
Session: Poster Display session 3
Resources:
Abstract
5093 - Vaginal moisturizing post PDR-Pulse Dose Rate Brachytherapy.
Presenter: Pilar Fernández
Session: Poster Display session 3
Resources:
Abstract
1066 - The stomized, chemo and radiotreated patient vs untreated patient: complications and comparison with data literature
Presenter: Cristoforo Ferrero
Session: Poster Display session 3
Resources:
Abstract
1724 - Evaluating the role of clinical nurse specialist
Presenter: Anita Zeneli
Session: Poster Display session 3
Resources:
Abstract
3753 - Role of the Advanced Practice Nurse (APN) in a Functional Unit for Lung cancer at the Catalan Institute of Oncology
Presenter: Isabel Brao
Session: Poster Display session 3
Resources:
Abstract
2676 - A bottom-up approach for prioritising the scientific activities of the Italian Association of Cancer Nurses (AIIAO): rationale and topic identification
Presenter: Valentina Biagioli
Session: Poster Display session 3
Resources:
Abstract
575 - Investigating quality of care for people with cancer and dementia
Presenter: Naomi Farrington
Session: Poster Display session 3
Resources:
Abstract
5578 - Two years of BRCA1 and BRCA2 somatic External Quality Assessment with Gen&tiss Tiss scheme in France
Presenter: Kelly Dufraing
Session: Poster Display session 3
Resources:
Abstract