Abstract 5135
Background
In eukaryotic cells treated with chemotherapeutic drugs DNA double strand breaks (DSB) are the most severe form of DNA damage which usually leads to apoptotic cell death. Cytotoxic chemotherapy is still a mainstay of cancer therapy, but there are few established methods to individually predict efficacy and tolerability. In most regimens dosage is based on the body surface area, a dimension of little biological precision, and individual dose adaptions are usually performed by clinical guessing or in response to adverse events. This project sets out to examine biological parameters of cell damage.
Methods
In particular, we measure DNA double strand breaks by an automated yH2AX assay applying the Aklides NUK® system. In preliminary work, PBMCs were stimulated with bendamustine or with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone, the components of the R-CHOP protocol, to induce DSB. Recruitment of lymphoma patients under R-CHOP therapy and its cytotoxic effects on DSB is currently ongoing.
Results
There was no inter-individual correlation between drug dose and number of foci, whereas does titrations on the cells of each individual donor demonstrated a clear correlation between dose and yH2AX assay result. Measurements of DSB in vivo using PBMCs of lymphoma patients is currently ongoing. First results show a rising number of DSBs in leucocytes under chemotherapy.
Conclusions
The lack of correlation across individuals between yH2AX foci and drug dosage based on standard calculation by body surface area suggests that standardized dosing of chemotherapeutic drugs based on gross physical determinants such as weight or body surface area does not correspond to the individual’s biological response and clinical effect. To confirm our hypothesis, different biomarkers should also to be involved in this project, like microRNAs and telomere length. The future plan of this project is the replacement of standard dosage regimens by biologically based, real-time-adapted individual dosage in lymphoma to reduce toxicity while increasing therapeutic efficacy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Brandenburgian Ministry of Science, Research and Culture (MWFK) Federal Ministry of Education and Research.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1757 - Development of chimeric antigenic receptor (CAR) against VEGFR2 for solid tumor treatment
Presenter: Li-Shuang Ai
Session: Poster Display session 1
Resources:
Abstract
4156 - Triple blockade of EGFR, MEK and PD-L1 as effective antitumor treatment in PD-L1 overexpressing, MEK inhibitor resistant colon cancer cells.
Presenter: Nunzia Matrone
Session: Poster Display session 1
Resources:
Abstract
2949 - EGFR-mediated PD-L1 upregulation in HER2+ breast cancer (BC) cell line models
Presenter: Nicola Gaynor
Session: Poster Display session 1
Resources:
Abstract
4270 - The impact of cortisol on immune cells and its effect on cancer-immune cells co-culture in a 3D spheroid of ovarian cancer
Presenter: Maysa Al-natsheh
Session: Poster Display session 1
Resources:
Abstract
1568 - Application of sonoporation to increase anticancer drug efficacy in 2D and 3D NSCLC cell cultures
Presenter: Vilma Petrikaite
Session: Poster Display session 1
Resources:
Abstract
5400 - Tr1-like cells in human peripheral blood are part of the T effector memory pool and are preferentially stimulated via CD55
Presenter: Iniobong Charles
Session: Poster Display session 1
Resources:
Abstract
5817 - Functional analysis of tumor infiltrating lymphocytes in triple negative breast cancer focusing on granzyme B
Presenter: Hitomi Kawaji
Session: Poster Display session 1
Resources:
Abstract
2287 - Aberrant glycolysis associates with inflammatory tumor microenvironment and promotes metastasis in triple-negative breast cancer
Presenter: Chengwei Lin
Session: Poster Display session 1
Resources:
Abstract
735 - Anti-cancer effects of differentiation-inducing factor-1 in triple negative breast cancer.
Presenter: Fumi Tetsuo
Session: Poster Display session 1
Resources:
Abstract
2105 - The Inhibitory Effect in Oral Squamous Cell Carcinoma Cells by Knocking down Matrix Metalloproteinase 9
Presenter: Xinyan Zhang
Session: Poster Display session 1
Resources:
Abstract