Abstract 5454
Background
Liver cancer (LC) is presumed to be the sixth most common and newly diagnosed cancer and the fifth leading causing of cancer death around the world in 2018. Hepatocellular carcinoma (HCC) is the most frequent liver cancer and the chronic infection with hepatitis B/C virus is the major risk factor of HCC. Unlike tissue biopsy, liquid biopsy is based on collection of a sample in non-invasive and convenient way at multiple time points over the course of disease. For circulating cell free DNA, it can be used for Next Generation Sequencing (NGS) to detect genetic mutations.
Methods
Whole Blood of patients are collected and plasma was separated. The circulating tumor DNA (ctDNA) is extracted from the plasma samples and quantified using Qubit High Sensitive assay and Agilent D1000 assay. The extracted ctDNA is used for molecular barcoded library construction and captured with probe for next generation sequencing. All samples were then analyzed to identify genetic mutations.
Results
Currently, 20 HCC patients were collected and samples were extracted, sequenced and analyzed. Two thirds of the patients were hepatitis B-viral infected and the one third of the patients were Non-B, Non-C HCC. Most patients were staged 3 others were staged 1 or 2 in HCC. The total ctDNA in 2ml plasma of each patietns were ranged from 2.0 ng to 200ng. As total amount of ctDNA were varied, input ctDNA to construct library was differed ranging from 2ng to 50ng. After molecular tagged libraries were constructed, were pooled and captured with probe for next generation sequencing on Nextseq 500/550 300cycles. Data analysis was performed: TP53 mutations were most frequent and the frequency of mutations are ranged from 3% to 40%.
Conclusions
To fully utilize advantages of the liquid biopsy and circulating tumor DNA, detection of low frequency mutations in the cancer is essential. Detection of low frequency mutation in circulating tumor DNA of hepatocellular carcinoma via optimization of circulating tumor DNA Isolation in plasma samples, optimization of library preparation and target capture condition by using molecular barcoding and customized somatic mutation probe, may improve prognosis, diagnosis, prediction and monitoring of therapeutic response and detection of residual tumor burden.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
3441 - The SWI/SNF driven reprograming for the AR cistrome is NSD2 dependent
Presenter: Katia Ruggero
Session: Poster Display session 1
Resources:
Abstract
1659 - IGF1R inhibition affects the survival of HT29 cancer cells by alterations of the TLR9- and autophagy signaling
Presenter: Györgyi Műzes
Session: Poster Display session 1
Resources:
Abstract
1379 - Characterization of atypical dMMR (deficient MisMatch Repair) tumors: a study from a large cohort of 4948 cases
Presenter: Marion Jaffrelot
Session: Poster Display session 1
Resources:
Abstract
1657 - Modulation of TLR9-dependent autophagy response via inhibition of c-Met signaling influences the survival of HT29 cancer cells
Presenter: Ferenc Sipos
Session: Poster Display session 1
Resources:
Abstract
3045 - Positive Feedback Activation of Notch Signal by Obesity Enhances Colorectal Tumorigenicity
Presenter: Dake Chu
Session: Poster Display session 1
Resources:
Abstract
2285 - The Pathological and Functional Roles of BRPF1 in Hepatocellular Carcinoma
Presenter: Lai Hung Carol Cheng
Session: Poster Display session 1
Resources:
Abstract
3210 - Protein tyrosine phosphatase non-receptor type 3 (PTPN3) could be a new therapeutic target for pancreatic cancer.
Presenter: Akio Yamasaki
Session: Poster Display session 1
Resources:
Abstract
3920 - A Novel bispecific BCMAxCD3 T cell engaging antibody that treat multiple myeloma (MM) with minimal cytokine serection
Presenter: Zhenyu Li
Session: Poster Display session 1
Resources:
Abstract
2691 - Quantitative spatial profiling of lymphocyte-activation gene 3 (LAG-3)/major histocompatibility complex class II (MHC II) interaction in gastric and urothelial tumors
Presenter: Cyrus Hedvat
Session: Poster Display session 1
Resources:
Abstract
2182 - Evaluating the prevalence of the expression of PD-L1 in NSCLC specimens with short-duration formalin fixation using IHC 22C3 pharmDx
Presenter: Keiichi Ota
Session: Poster Display session 1
Resources:
Abstract