Abstract 3607
Background
We aimed to establish a prognostic model based on magnetic resonance imaging using deep learning to predict disease-free survival in patients with non-metastatic nasopharyngeal carcinoma.
Methods
In this retrospective, cohort study, we included 1636 patients who were diagnosed with non-metastatic nasopharyngeal carcinoma and underwent radical treatment at the Sun Yat-sen University Cancer Center. Patients from October 2010 to March 2015 were randomly divided into training cohort (n = 878) and validation cohort (n = 376); 382 patients from April 2015 to September 2015 were separated as test cohort. 3D DenseNet models learned deep representations of pre-treatment MRI and risk scores were extracted to predict PFS in the training cohort. We evaluated the accuracy of the prognostic model in validation and test cohorts. The primary endpoint was DFS, and the secondary endpoint was distant metastasis-free survival (DMFS).
Results
A series of risk scores for each patient were extracted from 3D DenseNet models, and an optimal cut-off value of risk scores was generated to classify patients into low-risk and high-risk group in the training cohort. Patients with low-risk scores had better DFS (hazard ratio [HR] 0.62, 95% CI 0.55 -0.70; p < 0.0001) and DMFS (HR 0.62, 95% CI 0.48 -0.81; p < 0.0003) than patients with low-risk scores. And we validated the prognostic accuracy of risk scores in the validation and test cohorts. In addition, patients who received concurrent chemotherapy had a poorer DFS (hazard ratio [HR] 7.79, 95% CI 1.08 -56.00; p < 0.041) compared with those who did not receive concurrent chemotherapy in low-risk group, meanwhile, patients with or without concurrent chemotherapy had similar outcomes in the high-risk group (HR 2.39, 95% CI 0.59 -9.62; p = 0.22). We also developed a nomogram based on risk scores and several clinical factors that predicted an individual’s risk of DFS.
Conclusions
MRI-based 3D DenseNet models are effective tools to learn deep representations and extract risk scores of DFS. Risk scores can be reliable prognostic factors to select which patients benefit from concurrent chemotherapy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
The National Natural Science Foundation of China.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
4614 - Predictors of Response to Checkpoint Inhibitors in Naïve and Ipilimumab-Refractory Melanoma
Presenter: Domenico Mallardo
Session: Poster Display session 3
Resources:
Abstract
2901 - IFN-γ/IL-10 ratio as predictive biomarker for response to anti-PD-1 therapy in metastatic melanoma patients
Presenter: Emilio Giunta
Session: Poster Display session 3
Resources:
Abstract
2306 - Multiplex Chromogenic Immunohistochemistry (IHC) for Spatial Analysis of Checkpoint-Positive Tumor Infiltrating Lymphocytes (TILs)
Presenter: Scott Ely
Session: Poster Display session 3
Resources:
Abstract
1678 - The role of PD-L1 expression as a predictive biomarker in advanced renal cell carcinoma: a meta-analysis of randomized clinical trials.
Presenter: Alberto Carretero-Gonzalez
Session: Poster Display session 3
Resources:
Abstract
5138 - Radiomic Features as a Non-invasive Biomarker to Predict Response to Immunotherapy in Recurrent or Metastatic Urothelial Carcinoma
Presenter: Kye Jin Park
Session: Poster Display session 3
Resources:
Abstract
5800 - Integrative combination of high-plex digital profiling techniques and cluster analysis to reveal complex immune biology in the tumor microenvironment of mesothelioma
Presenter: Carmen Ballesteros-Merino
Session: Poster Display session 3
Resources:
Abstract
5736 - Predictive factors of response to immunotherapy in 198 patients with metastatic non-microcytic lung cancer (mNSCLC): real world data from 2 university hospitals in Spain
Presenter: Juan Felipe Cordoba Ortega
Session: Poster Display session 3
Resources:
Abstract
5645 - Evaluating Lung CT Density Changes Among Patients with Extensive Stage Small Cell Lung Cancer (ES-SCLC) Treated with Thoracic Radiotherapy (TRT) alone or TRT Followed by Combined Ipilimumab (IPI) and Nivolumab (NIVO).
Presenter: Kujtim Latifi
Session: Poster Display session 3
Resources:
Abstract
1540 - Immuno-oncology therapy biomarkers differences between polyoma-virus positive and negative Merkel cell carcinomas
Presenter: Zoran Gatalica
Session: Poster Display session 3
Resources:
Abstract
4538 - Can we improve patient selection for phase 1 clinical trials (Ph1) based on Immuno-Oncology score prognostic index (VIO)?
Presenter: Ignacio Matos Garcia
Session: Poster Display session 3
Resources:
Abstract