Abstract 5725
Background
One limitation in the breast cancer research field is that there are few in vitro models of breast cancer able to predict drug response and thus clinical patients’ outcome, mainly because the present models do not take account of the tumor heterogeneity. To address this issue, we developed an in vitro 3D organoid culture system using primary human breast cancer tissue that could be used to recapitulate in vivo organs. A major difficulty in the development of such models is to identify in vitro conditions that preserve the breast cancer phenotypes observed in vivo.
Methods
We isolated organoids from breast cancer patients and optimized the organoids growing conditions. By immunofluorescence assay we confirmed the receptor status, and the preservation of epithelial (E-cadherin) or the fibroblasts components included in the tissue microenvironment (TME) (alfa-SMA and FAP). Here we used organoids as mimic of tumor burden for drug penetration studies. In particular, we studied doxorubicin (DOX) penetration and biodistribution, by several means: immunofluorescence studies, caspase assay, and cell viability.
Results
We demonstrated by IF studies, that miR-340, an oncosuppressor miR, was able to modulate DOX penetration. At the same time, miR-340 induced an increase in DOX sensitivity assessed by caspase-3 assay, PARP cleavage, as well as p38 phosphorylation. Breast cancer organoids have also been used to better understand the role of the TME in breast cancer response to therapy. We assessed drug sensitivity in the presence or absence of conditioned media obtained from cancer activated fibroblasts (CAFs). We found that organoids treated with conditioned media exhibit lower level of caspase 3 activation compared to the control upon palbociclib treatment, suggesting the importance role of TME in drug resistance.
Conclusions
Thus, organoids can be considered as a new tool for studying breast cancer and developing personalized medicine approaches and to test possible use of RNA therapeutics.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Gerolama Condorelli.
Funding
AIRC.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
592 - Effects of novel targeted anticancer drugs on cytotoxicity, apoptosis, angiogenesis, EMT, drug resistance and autophagic mechanism
Presenter: Seyma Aydinlik
Session: Poster Display session 1
Resources:
Abstract
3235 - Delineating the mechanisms of alpha 1-3 fucosyltransferase FUT11 in ovarian cancer
Presenter: Qi Chen
Session: Poster Display session 1
Resources:
Abstract
3577 - The tyrosine kinase inhibitor Dasatinib blocks tumor growth, invasion and recurrence potential by interrupting the communication between cancer cells and their surrounding microenvironment in triple negative breast cancer
Presenter: Miriam Nuncia-Cantarero
Session: Poster Display session 1
Resources:
Abstract
4808 - NORE1A induces a feedback termination of TNF signaling by antagonizing TNFR1 through ITCH-mediated destruction complex
Presenter: Jieun Ahn
Session: Poster Display session 1
Resources:
Abstract
1294 - Hsp90 inhibitors enhance the antitumoral effect of osimertinib and overcome osimertinib resistance in non-small-cell cell lung cancer cell models
Presenter: Jordi Codony-Servat
Session: Poster Display session 1
Resources:
Abstract
1559 - Expression of IL-17RA promotes cancer stem-like properties of colorectal cancer cells by Stat3 activation
Presenter: Chih-Yung Yang
Session: Poster Display session 1
Resources:
Abstract
1615 - Adaption of Pancreatic Cancer Cells to AKT1 Inhibition Induces the Acquisition of Cancer Stem-Cell Like Phenotype Through Upregulation of Mitochondrial Functions
Presenter: Hugo Arasanz
Session: Poster Display session 1
Resources:
Abstract
4793 - Bub3 is phosphorylated by the Ataxia-Telangiectasia Mutated Kinase in mitosis and required for activation of the mitotic spindle checkpoint in Breast Cancer
Presenter: Mingming Xiao
Session: Poster Display session 1
Resources:
Abstract
1448 - The regulation of INK4 locus by long non-coding RNAs
Presenter: Yojiro Kotake
Session: Poster Display session 1
Resources:
Abstract
1858 - Vascular Endothelial Growth Factor in Colorectal Cancer Pathology, Survival and Treatment
Presenter: Liz Baker
Session: Poster Display session 1
Resources:
Abstract