Abstract 5655
Background
Napabucasin (2-acetylfuro-1,4-naphthoquinone) is a small molecule currently being clinically evaluated in several different cancer types. It has mostly been recognized for its ability to inhibit STAT3-mediated gene expression with activity against bulk tumor cells, as well as cancer stem cells. However, based on its chemical structure, we hypothesized that napabucasin is a substrate for reduction by NAD(P)H:quinone oxidoreductase-1 (NQO1) and therefore may exert its anti-cancer effect through redox cycling, resulting in reactive oxygen species (ROS) production and cell death.
Methods
Binding of napabucasin to NQO1, as well as other oxidoreductases, was measured. Pancreatic cancer cell lines and xenografts were treated with napabucasin, and cell survival, ROS generation, glutathione to glutathione disulfide (GSH:GSSG) ratios and changes in STAT3 signaling were assayed. Genetic knockout or pharmacological inhibition with dicoumarol was used to evaluate the dependency on NQO1 in vitro and in vivo.
Results
Napabucasin was found to bind with high affinity to NQO1 and to a lesser degree to cytochrome P450 oxidoreductase (POR). Differential cytotoxic effects were observed, where NQO1-expressing cells in particular were highly sensitive. Treatment resulted in significant induction of ROS with reduced GSH:GSSG ratios, increased DNA damage and an NQO1-dependent decrease in STAT3 phosphorylation. Cells with low or no baseline NQO1 expression also produced ROS in response to napabucasin treatment, albeit to a lesser degree, through the one-electron reductase POR.
Conclusions
Napabucasin is bioactivated by oxidoreductases, in particular NQO1 and to a lesser extent POR, resulting in futile redox cycling and generation of cytotoxic levels of ROS. The increase in ROS has multiple intracellular effects, one of which is a reduction in STAT3 signaling, ultimately resulting in cell death.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Lustgarten Foundation, National Institutes of Health, Donaldson Charitable Trust, Boston Biomedical Inc.
Disclosure
J. Li: Full / Part-time employment: Boston Biomedical, Inc. A. Chang: Full / Part-time employment: Boston Biomedical, Inc.. H.A. Rogoff: Full / Part-time employment: Boston Biomedical, Inc.. J.D. Watson: Advisory / Consultancy, The consultancy occured in the past: Boston Biomedical, Inc. All other authors have declared no conflicts of interest.
Resources from the same session
4634 - Comparative molecular analyses between microsatellite stable BRAFV600E mutant colorectal cancers and BRAFV600E mutant melanomas.
Presenter: Mohamed Salem
Session: Poster Display session 3
Resources:
Abstract
3264 - A novel preclinical model of RAF-independent MEK1 mutant tumors and its treatment with novel ATP competitive MEK inhibitor
Presenter: Luca Hegedus
Session: Poster Display session 3
Resources:
Abstract
4918 - HER2 inhibition in Aggressive Squamous Cell Carcinomas driven by a common MET Sema Domain Polymorphism
Presenter: Nur Afiqah Mohamed Salleh
Session: Poster Display session 3
Resources:
Abstract
2426 - ADAM9 as a target for lung cancer treatment
Presenter: Yuh-pyng Sher
Session: Poster Display session 3
Resources:
Abstract
5537 - Novel polyurea/polyurethane nanocapsules loaded with a tambjamine analog to improve cancer chemotherapy delivery and safety in lung cancer
Presenter: Marta Perez Hernandez
Session: Poster Display session 3
Resources:
Abstract
1597 - Discovery of Clinical Candidate DBPR112, a Furanopyrimidine-based Epidermal Growth Factor Receptor Inhibitor for the Treatment of Non-Small Cell Lung Cancer
Presenter: Hsing-pang Hsieh
Session: Poster Display session 3
Resources:
Abstract
3543 - Molecular characteristics in lung squamous cell carcinomas dependent on TP53 status – putative targets
Presenter: Vilde Haakensen
Session: Poster Display session 3
Resources:
Abstract
4111 - Comparison of molecular profiles between primary tumour and matched metastasis in non-small cell lung cancer
Presenter: Asuka Kawachi
Session: Poster Display session 3
Resources:
Abstract
4559 - Treatment with BLU-667, a potent and selective RET inhibitor, provides rapid clearance of ctDNA in Patients with RET-altered Non-Small Cell Lung Cancer (NSCLC) and Thyroid Cancer
Presenter: Giuseppe Curigliano
Session: Poster Display session 3
Resources:
Abstract
2501 - Triple MET/SRC/PIM inhibition in MET addicted tumors
Presenter: Ilaria Attili
Session: Poster Display session 3
Resources:
Abstract