Abstract 1454
Background
Peritoneal carcinomatosis with malignant ascites is associated with dismal prognosis in gastric cancer. Malignant ascites is the most relevant body fluid in which to seek diagnostic biomarkers for peritoneal carcinomatosis. We aimed to identify and validate ascites-derived circulating microRNAs (miRNAs) that are differentially expressed between liver cirrhosis-associated benign ascites (LC-ascites) and gastric cancer-associated malignant ascites (GC-ascites).
Methods
MiRNA expression levels were investigated in three independent cohorts. Overall, 165 ascites samples (73 LC-ascites and 92 GC-ascites) were obtained from the National Biobank of Korea. Initially, microarrays were used to screen the expression levels of 2,006 miRNAs in the discovery cohort (n = 22). Subsequently, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analyses were used to validate the expression levels of selected miRNAs in the training (n = 70) and validation (n = 73) cohorts. In addition, the levels of carcinoembryonic antigen (CEA) were determined in the ascites samples.
Results
A total of 36 miRNAs were identified as having the potential to discriminate GC-ascites from LC-ascites via microarray analyses. Expression levels of miR-574-3p, miR-181b-5p, miR-4481, and miR-181d were significantly lower in the GC-ascites samples than in the LC-ascites samples via qRT-PCR analyses, and miR-181b-5p showed the best diagnostic performance for GC-ascites (area under the curve [AUC] = 0.798 and 0.846 for the training and validation cohorts, respectively). The diagnostic performance of CEA for GC-ascites was improved if miR-181b-5p and CEA were analyzed together (AUC = 0.981 and 0.946 for the training and validation cohorts, respectively).
Conclusions
We identified ascites-derived circulating miRNAs capable of differentiating non-malignant ascites and GC-ascites, and demonstrated that the combined use of miR-181b-5p and CEA produces the optimal diagnostic yield.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
National Research Foundation of Korea (NRF).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
3264 - A novel preclinical model of RAF-independent MEK1 mutant tumors and its treatment with novel ATP competitive MEK inhibitor
Presenter: Luca Hegedus
Session: Poster Display session 3
Resources:
Abstract
4918 - HER2 inhibition in Aggressive Squamous Cell Carcinomas driven by a common MET Sema Domain Polymorphism
Presenter: Nur Afiqah Mohamed Salleh
Session: Poster Display session 3
Resources:
Abstract
2426 - ADAM9 as a target for lung cancer treatment
Presenter: Yuh-pyng Sher
Session: Poster Display session 3
Resources:
Abstract
5537 - Novel polyurea/polyurethane nanocapsules loaded with a tambjamine analog to improve cancer chemotherapy delivery and safety in lung cancer
Presenter: Marta Perez Hernandez
Session: Poster Display session 3
Resources:
Abstract
1597 - Discovery of Clinical Candidate DBPR112, a Furanopyrimidine-based Epidermal Growth Factor Receptor Inhibitor for the Treatment of Non-Small Cell Lung Cancer
Presenter: Hsing-pang Hsieh
Session: Poster Display session 3
Resources:
Abstract
3543 - Molecular characteristics in lung squamous cell carcinomas dependent on TP53 status – putative targets
Presenter: Vilde Haakensen
Session: Poster Display session 3
Resources:
Abstract
4111 - Comparison of molecular profiles between primary tumour and matched metastasis in non-small cell lung cancer
Presenter: Asuka Kawachi
Session: Poster Display session 3
Resources:
Abstract
4559 - Treatment with BLU-667, a potent and selective RET inhibitor, provides rapid clearance of ctDNA in Patients with RET-altered Non-Small Cell Lung Cancer (NSCLC) and Thyroid Cancer
Presenter: Giuseppe Curigliano
Session: Poster Display session 3
Resources:
Abstract
2501 - Triple MET/SRC/PIM inhibition in MET addicted tumors
Presenter: Ilaria Attili
Session: Poster Display session 3
Resources:
Abstract
5655 - Bioactivation of napabucasin triggers reactive oxygen species–mediated cancer cell death
Presenter: Fieke Froeling
Session: Poster Display session 3
Resources:
Abstract