Abstract 88P
Background
With lung remains the second common site of colon-rectal cancer metastasis, it is still a challenge for early detection and finding. Therefore, we evaluate the CT-based radiomics of indeterminate lung nodules, predicting lung metastasis and prognosis in locally advanced rectal cancer patients.
Methods
A retrospective review for lung metastatic patients with colon-rectal cancer (CRC) and chest CT images were conducted. Radiomic prediction model of lung metastasis was trained by 114 patients with pathologically verified lung metastasis and 122 patients with benign lung nodules. We investigate the value of radiomics for identifying lung metastasis in 174 locally advanced rectal cancer(LARC) patients with follow-up information. Then, we conducted a Cox model and Kaplan-Meier curve analysis based on radiomics risk scores, and compare them to a clinical-pathological model for prognostic prediction. We use LASSO and linear regression to generated the radiomics model. C-index was used to assess model performance.
Results
For lung metastatic nodule identification in CRC patient, the C-index was 0.794(95%CI 0.784 -0.803) in the training set and 0.752(95%CI 0.728-0.776) in the validation set. In LARC patients, the C-index for lung metastatic identification was 0.771(95%CI 0.763-0.780). For prognostic prediction in LARC patients, ypTNM stage had a great influence on prognosis(Log-rank test P=0.003), and the C-index was 0.695 (95%CI 0.638-0.752). The C-index for nodules was 0.663(95%CI 0.575-0.751) with HR=1.148 (95% 1.050-1.256, P=0.003), and P<0.001 for Log-rank test. The combination of the ypTNM stage and nodule radiomics information has the C-index of 0.757 (95%CI 0.692-0.822), with P<0.001 for Log-rank test, which increase the performance of clinical prognostic prediction(P= 0.044).
Conclusions
Radiomics for nodules can determine lung metastasis in LARC patients. Lung nodules radiomics can provide information for prognostic analysis. The combination of lung nodules radiomics and ypTNM information increases the performance of prognostic prediction in LARC patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
313P - Diagnostic value of micro RNA (miRNA) in renal cell cancer: A meta-analysis and systemic review
Presenter: Jestoni Aranilla
Session: e-Poster Display Session
314P - Comprehensive microbial signatures and genomic profiling in tumour samples using next generation sequencing
Presenter: Mei Qi Yee
Session: e-Poster Display Session
315P - High-penetrance breast and/or ovarian cancer susceptibility genes in Filipinos
Presenter: Frances Victoria Que
Session: e-Poster Display Session
316P - Implementation of Vela Analytics to accelerate comprehensive interpretation and reporting of next-generation sequencing-based oncology testing in clinical diagnostic laboratories
Presenter: Yingnan Yu
Session: e-Poster Display Session
317P - Genomic profiling and molecular pathology of Chinese glioma patients
Presenter: yuanli Zhao
Session: e-Poster Display Session
320P - Psychometric interplay of the perception of the real-life impact of COVID-19 pandemic: A cross-sectional survey of patients with newly diagnosed malignancies
Presenter: Kelvin Bao
Session: e-Poster Display Session
321P - Impact of COVID-19 and lockdown on adherence to treatment schedule among cancer patients
Presenter: Krishnamani Kalpathi
Session: e-Poster Display Session
322P - Challenged faced by cancer patients during the COVID-19 pandemic
Presenter: mithra Krishnamani
Session: e-Poster Display Session
323P - Oncology care in the Republic of Kazakhstan during COVID-19
Presenter: Dilyara Kaidarova
Session: e-Poster Display Session
324P - COVID era: Perception of oncologists from a developing nation
Presenter: Rakesh Roy
Session: e-Poster Display Session