Abstract 407P
Background
Tumor mutation burden (TMB) served as an effective biomarker predicting efficacy of mono-immunotherapy for non-small cell lung cancer (NSCLC). While, establishing a precise TMB predicting model is essential to monitor which populations are likely to respond to immunotherapy or prognosis and to maximize the benefits of treatment.
Methods
Available Formalin-fixed paraffin embedded tumor tissues were collected from 499 patients with NSCLC. Targeted sequencing of 636 cancer related genes were performed and TMB was calculated.
Results
Distribution of TMB was significantly (p < 0.001) correlated with sex, clinical features (pathological /histological subtype, pathological stage, lymph node metastasis and lympho-vascular invasion). It was also significantly (p < 0.001) associated with mutations in genes like TP53, EGFR, PIK3CA, KRAS, EPHA3, TSHZ3, FAT3, NAV3, KEAP1, NFE2L2, PTPRD, LRRK2, STK11, NF1, KMT2D and GRIN2A. No significant correlations were found between TMB and age, neuro-invasion (p=0.125), and tumor location (p= 0.696). Patients with KRAS p.G12 mutations and FAT3 missense mutations were associated (p< 0.001) with TMB. TP53 mutations also influence TMB distribution (P<0.001). TMB is reversely related to EGFR mutations (P<0.001) but is not differed by mutation types. According to multivariate logistic regression model, genomic parameters can effectively construct model predicting TMB, which may be improved by introducing clinical information.
Conclusions
Our study demonstrates genomic together with clinical features yielded a better reliable model predicting TMB-high status. A simplified model consisting of less than 20 genes and couples of clinical parameters sought to be useful to provide TMB status with less cost and waiting time.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
D. Shao: Full/Part-time employment: BGI Genomics. All other authors have declared no conflicts of interest.
Resources from the same session
94P - Prognostic influence of mean platelet volume on stage III rectal cancer patients: A tertiary cancer center study
Presenter: Pavan Jonnada
Session: e-Poster Display Session
95P - Prognosis of Japanese patients with detailed RAS/BRAF mutant colorectal cancer
Presenter: Tatsuki Ikoma
Session: e-Poster Display Session
96P - Early-onset colorectal cancer prognosis, conflict resolution, review of literature and meta-analysis
Presenter: Ereny Poles
Session: e-Poster Display Session
97P - A population-based study to assess the associations of rural residence and low socioeconomic status (SES) with cardiovascular disease (CVD) in patients with colorectal cancer (CRC)
Presenter: Atul Batra
Session: e-Poster Display Session
98P - Operational challenges of an Asian Pacific (APAC) academic oncology clinical trial
Presenter: Daphne Day
Session: e-Poster Display Session
99P - Development of a qRT-PCR-based diagnostic test to identify colorectal cancer patients with recurrent R-Spondin gene fusions
Presenter: Veronica Diermayr
Session: e-Poster Display Session
100P - Individualized treatment of advanced digestive system tumour guided by PDTX mouse model: A multicenter trial
Presenter: yuan cheng
Session: e-Poster Display Session
101P - HIF1-α depletion overcomes resistance to oxaliplatin in colorectal cancer via ERK signalling pathway
Presenter: Se Jun Park
Session: e-Poster Display Session
102P - Colorectal cancer organoids culture exploits new neoadjuvant therapy resistance mechanisms and therapeutic targets
Presenter: Yun Deng
Session: e-Poster Display Session
103P - Comprehensive genomic landscape in younger and older Chinese patients with colorectal cancer
Presenter: Huina Wang
Session: e-Poster Display Session