Abstract 307P
Background
The incident rate of thyroid nodules has risen globally, thus it is critical to identify malignancy among benign lesions. Currently available molecular diagnostics for malignant nodules have not achieved the desired degree of accuracy. We aimed to identify DNA methylation markers to accurately classify benign and malignant nodules, and to develop tools for non-invasive screening of thyroid cancer.
Methods
Marker screening was performed on papillary thyroid cancer (PTC, 37 tissues, 55 plasmas), benign nodules (BTN, 37 tissues, 55 plasmas) and normal samples (20 buffy coats; 123 plasmas) by MONOD+ assay. We identified differential markers by Wilcox rank sum test using Benjamini-Hochberg procedure to control false discovery rate. Predication models were built using machine-learning algorithms including random forest and support vector machine. They were validated using public DNA methylation data of thyroid tissues. Candidate markers were developed into a targeted sequencing panel and were validated on plasma DNA samples (115 PTC, 102 BTN). Best-performing markers were developed into an improved panel to classify additional plasma DNA samples of malignant or benign thyroid nodules.
Results
From the MONOD+ data we identified over 1000 DNA methylation markers significantly differential between malignant and benign nodules. We built a classification model by random forest method, which classified DNA methylation profiles of thyroid nodules at a sensitivity of 90.5% and a specificity of 91.9% (95% CI, 0.91-1.0). We produced a targeted sequencing panel using those markers and sequenced plasma DNA of PTC and benign nodules. Two thirds of them were used as a training cohort to build a prediction model, which classified the remaining samples at an accuracy of 72%. We selected the best-performing markers to build an advanced version of panel, which classified additional over 500 plasma DNA samples of thyroid nodules with increased sequencing depth to improve the accuracy and consistency in classification.
Conclusions
Our study demonstrates that DNA methylation markers can robustly differentiate thyroid nodules based on their malignancy. They are thus promising candidates to develop non-invasive diagnostics for thyroid cancer screening.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The First Affiliated Hospital, Sun Yat-sen University.
Funding
The First Affiliated Hospital, Sun Yat-sen University.
Disclosure
Z. Su, Q. He: Shareholder/Stockholder/Stock options, Full/Part-time employment: Singlera Genomics. L. Cheng: Full/Part-time employment: Singlera Genomics. R. Liu: Leadership role, Shareholder/Stockholder/Stock options, Full/Part-time employment: Singlera Genomics. All other authors have declared no conflicts of interest.
Resources from the same session
360P - Number of lymph nodes examined was not an independent risk factor for the survival of patients with stage IA1-2 lung adenocarcinoma undergoing sublobar resection
Presenter: Zhenbin Qiu
Session: e-Poster Display Session
361P - Radiomic model predicting radiological response after thoracic stereotactic body radiotherapy regardless of tumor histology and staging
Presenter: Ben Man Fei Cheung
Session: e-Poster Display Session
362P - Integrative and comparative genomic analysis and immune microenvironment features of lung cancer patients with tuberculosis
Presenter: Xiaoling Xu
Session: e-Poster Display Session
363P - Genetic predisposition for pre-invasive lung adenocarcinoma manifesting as ground-glass nodules with family history of lung cancer
Presenter: Rui Fu
Session: e-Poster Display Session
364P - A deep learning model for the classification of lung cancer
Presenter: Gouji Toyokawa
Session: e-Poster Display Session
365P - Utilization of on-site pathology evaluation for lung cancer diagnosis in the Philippines’ National University Hospital
Presenter: Rich Ericson King
Session: e-Poster Display Session
367P - Detection of epidermal growth factor receptor mutations (EGFR-mut) from cell-free DNA in pleural effusion (PE-DNA) of patients with non-small cell lung cancer (NSCLC)
Presenter: Kirsty Lee
Session: e-Poster Display Session
368P - Real-world characteristics, treatment, and outcomes of stage III non-small cell lung cancer in Japan: SOLUTION study
Presenter: Haruyasu Murakami
Session: e-Poster Display Session
369P - The surgical perspective in neoadjuvant immunotherapy for resectable non-small cell lung cancer
Presenter: Long Jiang
Session: e-Poster Display Session
371P - Real-world insights into treatment patterns and outcomes in stage III non-small cell lung cancer (NSCLC): KINDLE study India analysis
Presenter: Kumar Prabhash
Session: e-Poster Display Session