Abstract 307P
Background
The incident rate of thyroid nodules has risen globally, thus it is critical to identify malignancy among benign lesions. Currently available molecular diagnostics for malignant nodules have not achieved the desired degree of accuracy. We aimed to identify DNA methylation markers to accurately classify benign and malignant nodules, and to develop tools for non-invasive screening of thyroid cancer.
Methods
Marker screening was performed on papillary thyroid cancer (PTC, 37 tissues, 55 plasmas), benign nodules (BTN, 37 tissues, 55 plasmas) and normal samples (20 buffy coats; 123 plasmas) by MONOD+ assay. We identified differential markers by Wilcox rank sum test using Benjamini-Hochberg procedure to control false discovery rate. Predication models were built using machine-learning algorithms including random forest and support vector machine. They were validated using public DNA methylation data of thyroid tissues. Candidate markers were developed into a targeted sequencing panel and were validated on plasma DNA samples (115 PTC, 102 BTN). Best-performing markers were developed into an improved panel to classify additional plasma DNA samples of malignant or benign thyroid nodules.
Results
From the MONOD+ data we identified over 1000 DNA methylation markers significantly differential between malignant and benign nodules. We built a classification model by random forest method, which classified DNA methylation profiles of thyroid nodules at a sensitivity of 90.5% and a specificity of 91.9% (95% CI, 0.91-1.0). We produced a targeted sequencing panel using those markers and sequenced plasma DNA of PTC and benign nodules. Two thirds of them were used as a training cohort to build a prediction model, which classified the remaining samples at an accuracy of 72%. We selected the best-performing markers to build an advanced version of panel, which classified additional over 500 plasma DNA samples of thyroid nodules with increased sequencing depth to improve the accuracy and consistency in classification.
Conclusions
Our study demonstrates that DNA methylation markers can robustly differentiate thyroid nodules based on their malignancy. They are thus promising candidates to develop non-invasive diagnostics for thyroid cancer screening.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The First Affiliated Hospital, Sun Yat-sen University.
Funding
The First Affiliated Hospital, Sun Yat-sen University.
Disclosure
Z. Su, Q. He: Shareholder/Stockholder/Stock options, Full/Part-time employment: Singlera Genomics. L. Cheng: Full/Part-time employment: Singlera Genomics. R. Liu: Leadership role, Shareholder/Stockholder/Stock options, Full/Part-time employment: Singlera Genomics. All other authors have declared no conflicts of interest.
Resources from the same session
133P - Which patient subgroup needs more attention in early treatment failure? A matched cohort study of treatment failure patterns in locally advanced gastric cancer
Presenter: Dong Wu
Session: e-Poster Display Session
134P - Effect of preoperative tumour under-staging on the long-term survival of patients undergoing radical gastrectomy for gastric cancer
Presenter: Mi Lin
Session: e-Poster Display Session
135P - Significance of lymphatic invasion in the indication for additional gastrectomy after endoscopic treatment
Presenter: Hirohito Fujikawa
Session: e-Poster Display Session
136P - Modified ypTNM staging classification for gastric cancer after neoadjuvant therapy: A multi-institutional study
Presenter: Wen-Wu Qiu
Session: e-Poster Display Session
137P - Clinical utility of circulating tumour DNA (ctDNA) in resectable gastric cancer (GC)
Presenter: Mikhail Fedyanin
Session: e-Poster Display Session
138P - Prognostic importance of dynamic changes in systemic inflammatory markers for patients with gastric cancer
Presenter: Ying-Qi Huang
Session: e-Poster Display Session
139P - An intraoperative model for predicting survival and deciding therapeutic schedules: A comprehensive analysis of peritoneal metastasis in patients with advanced gastric cancer
Presenter: Zhi-Yu Liu
Session: e-Poster Display Session
140P - Preoperative and postoperative C-reactive protein levels predict recurrence and chemotherapy benefit in gastric cancer
Presenter: Li-Li Shen
Session: e-Poster Display Session
141P - Low expression of CDK5RAP3 and UFM1 indicates poor prognosis in patients with gastric cancer
Presenter: Ning-Zi Lian
Session: e-Poster Display Session
142P - Prognostic analysis of patients with intra-abdominal infectious complications after laparoscopy and open radical gastrectomy for gastric cancer: A propensity score-matching analysis
Presenter: Si-Jin Que
Session: e-Poster Display Session