Abstract 7P
Background
Neutrophil extracellular traps (NETs) are involved in the progression and metastasis of a variety of malignancies. Our previous studies have confirmed that tumor cell-released autophagosomes (TRAPs) induced immunosuppression TME formation. However, it remains to be investigated whether TRAPs-treated neutrophils contribute to the metastatic colonization of the lungs by tumor cells.
Methods
NETs were observed by scanning electron microscopy (SEM) and Confocal Microscope. Western blot and ELISA were used to quantify MPO-DNA, NE, and cit-H3 which are important components of NETs. In vivo, TRAPs were injected into the tail vein of mice and Beclin1 knockdown 4T1 tumor cells engineering to reduce TRAPs release were injected into mice subcutaneously. The characteristic molecules of NETs in plasma were detected. The study used antibody blocking assays and HMGB1 knockdown cell lines to identify key DAMPs on the surface of TRAPs. Inhibitor-treated neutrophils and TLR4 knockout mice were used to identify functional receptors on neutrophils. Flow cytometry was used to evaluate the effect of TRAPs on T cell function and lung infiltrating T cell function, as well as to monitor late lung metastases in neutrophils treated with TRAPs suppressor.
Results
Numerous reticular structures significantly increased in the cell culture supernatant after TRAPs treatment. In vivo, NETs were significantly increased in plasma after tail vein injection of TRAPs as well as in 4T1 tumor-bearing mice. Conversely, NETs were significantly decreased in the plasma of Beclin1 knockdown 4T1 tumor-bearing mice. TRAPs derived from breast tumor cell lines induced neutrophil formation of NETs via the HMGB1-TLR4-MyD88-ERK/p38 pathway. This process inhibited the proliferation and secretion of IFN-γ in CD4+ and CD8+ T cells, ultimately leading to increased lung metastasis.
Conclusions
Tumor cell-released autophagosomes (TRAPs) promote breast cancer lung metastasis by modulating neutrophil extracellular traps formation. Overall, these findings define a novel mechanism mediated by TRAPs in neutrophils, which may suppress anti-tumor T cell immunity and highlight TRAPs as an important target for future tumor immunotherapy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
C. Wu, X. Wang.
Funding
Supported by National Natural Science Foundation of China.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
561P - Mechanisms of osimertinib resistance using circulating tumor DNA analyses for EGFR-mutated non-small cell lung cancer, results from ELUCIDATOR: A prospective observational multicenter study
Presenter: Daijiro Harada
Session: Poster Display
Resources:
Abstract
562P - First-line (1L) osimertinib (osi) ± platinum-pemetrexed in patients (pts) with EGFRm advanced NSCLC: FLAURA2 China cohort
Presenter: Yan Yu
Session: Poster Display
Resources:
Abstract
563P - Real-world effectiveness and safety of first-line osimertinib for EGFR-mutated advanced NSCLC in China (FLOURISH study)
Presenter: Jianya Zhou
Session: Poster Display
Resources:
Abstract
564P - Co-occurring EGFR p.E709X mutation affects the treatment response to the third-generation EGFR-TKIs in EGFR p.G719X-mutant patients with advanced NSCLC
Presenter: Wen Feng Fang
Session: Poster Display
Resources:
Abstract
565P - Genome-guided targeted therapy combination improves survival in patients with advanced EGFR mutation positive NSCLC failing osimertinib
Presenter: Molly Li
Session: Poster Display
Resources:
Abstract
566P - Safety of tepotinib + osimertinib in EGFR-mutant NSCLC with MET amplification after first-line osimertinib
Presenter: Chong Kin Liam
Session: Poster Display
Resources:
Abstract
567P - Furmonertinib in combination with bevacizumab and intrathecal chemotherapy as later-line re-challenge treatment in EGFR –mutated NSCLC patients with leptomeningeal metastasis after third-generation EGFR-TKIs treatment failure
Presenter: Fang Cun
Session: Poster Display
Resources:
Abstract
568P - First-line (1L) osimertinib + platinum-pemetrexed in EGFR-mutated (EGFRm) advanced NSCLC: Updated FLAURA2 safety run-in (SRI) results
Presenter: David Planchard
Session: Poster Display
Resources:
Abstract
569P - Whole-transcriptome sequencing of transformed small-cell lung cancer from EGFR-mutated lung adenocarcinoma reveals LUAD–like and SCLC–like subsets
Presenter: Chan-Yuan Zhang
Session: Poster Display
Resources:
Abstract
570P - First-line osimertinib for patients with advanced NSCLC harboring EGFR mutations: A real-world study
Presenter: Wenxiang Ji
Session: Poster Display
Resources:
Abstract