Abstract 104P
Background
We evaluated the feasibility of functional magnetic resonance (MR) signature in predicting clinical response to chemotherapy in colorectal liver metastatic (CLM) patients.
Methods
From August 2016 to January 2023, eligible CLM patients were enrolled and functional MR was performed at baseline and one cycle after chemotherapy. The diffusion kurtosis radiomic texture features were extracted and functional MR-imaging signature model was built by the R package called “glmnet” to predict the efficacy of treatment. The initial 100 cases were utilized as training set, the following 48 cases as validation set, and the latter 48 cases as intervention validation set. The primary endpoint was the accuracy of MR-predicted response (ORR) of liver metastases.
Results
The functional MR signature was established and showed a good performance of response prediction (AUC was 0.818 in training cohort and 0.755 in validation cohort). In training set, ORRs were 9.5% (4/42) and 72.4% (42/58) in high-risk and low-risk subgroups. In validation set, the ORRs were 23.81% (5/21) and 74.07% (20/27) in high-risk and low-risk subgroups, respectively (P=0.002). Worse PFS and OS were observed in high-risk population in these two sets. In intervention set, chemotherapy regimen was changed in 22.9% (11/48) patients who were predicted as high-risk by the model, and the ORR reached 54.6 % (6/11), which was higher than that in high-risk subgroups in training and validation set.
Conclusions
Functional MR signature effectively predicts chemotherapy response and long-term survival of patients with CLM, and regimen adjustment guided by the model significantly improve the ORR.
Clinical trial identification
NCT03088163.
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
581P - The associations between afatinib-related adverse events and survival outcomes in patients with lung cancer
Presenter: Wen-Chen Tang
Session: Poster Display
Resources:
Abstract
582P - Furmonertinib treatment in patients with EGFR-mutated non-small cell lung cancer and leptomeningeal metastases: A real-world study
Presenter: Haiyang Chen
Session: Poster Display
Resources:
Abstract
583P - RHBDL2 promotes non-small cell lung cancer metastasis and osimertinib resistance by activating the RAS/MEK/ERK signaling pathway through interaction with FGFR
Presenter: jun Deng
Session: Poster Display
Resources:
Abstract
584P - Upfront aumolertinib for preventing symptomatic central nervous system(CNS) metastases in EGFR-mutant non-small cell lung cancer without baseline CNS metastasis
Presenter: Tangfeng Lv
Session: Poster Display
Resources:
Abstract
585P - Real-world outcomes in patients with non-small cell lung cancer with EGFR exon 20 insertion mutations receiving mobocertinib
Presenter: Tony S.K. Mok
Session: Poster Display
Resources:
Abstract
586P - Clinical validation of a multiplex polymerase chain reaction (mPCR) assay to identify patients (pts) with NSCLC suitable for mobocertinib treatment
Presenter: Caicun Zhou
Session: Poster Display
Resources:
Abstract
587P - Exploring the prevalence and characteristics of human epidermal growth factor receptor 2 (HER2) alterations in non-small cell lung cancer: Analysis from a Malaysian cohort
Presenter: Ning Yi Yap
Session: Poster Display
Resources:
Abstract
588P - First real-world study with HER2 ADC in treating HER2-altered non-small cell lung cancer
Presenter: Kaihua Lu
Session: Poster Display
Resources:
Abstract
590P - A retrospective study of the prevalence and clinical outcomes of KRAS G12C mutated advanced non-small cell lung cancer (NSCLC) in Australian patients (pts)
Presenter: Ben Markman
Session: Poster Display
Resources:
Abstract
591P - The utility of next generation sequencing for KRAS gene variants prevalence in cytological and tissue samples in real-world NSCLC patients: A large single institution real-world study
Presenter: Adam Pluzanski
Session: Poster Display
Resources:
Abstract