Abstract 104P
Background
We evaluated the feasibility of functional magnetic resonance (MR) signature in predicting clinical response to chemotherapy in colorectal liver metastatic (CLM) patients.
Methods
From August 2016 to January 2023, eligible CLM patients were enrolled and functional MR was performed at baseline and one cycle after chemotherapy. The diffusion kurtosis radiomic texture features were extracted and functional MR-imaging signature model was built by the R package called “glmnet” to predict the efficacy of treatment. The initial 100 cases were utilized as training set, the following 48 cases as validation set, and the latter 48 cases as intervention validation set. The primary endpoint was the accuracy of MR-predicted response (ORR) of liver metastases.
Results
The functional MR signature was established and showed a good performance of response prediction (AUC was 0.818 in training cohort and 0.755 in validation cohort). In training set, ORRs were 9.5% (4/42) and 72.4% (42/58) in high-risk and low-risk subgroups. In validation set, the ORRs were 23.81% (5/21) and 74.07% (20/27) in high-risk and low-risk subgroups, respectively (P=0.002). Worse PFS and OS were observed in high-risk population in these two sets. In intervention set, chemotherapy regimen was changed in 22.9% (11/48) patients who were predicted as high-risk by the model, and the ORR reached 54.6 % (6/11), which was higher than that in high-risk subgroups in training and validation set.
Conclusions
Functional MR signature effectively predicts chemotherapy response and long-term survival of patients with CLM, and regimen adjustment guided by the model significantly improve the ORR.
Clinical trial identification
NCT03088163.
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
39P - Prognostic significance of hypoxic microenvironment biomarkers in invasive ductal breast cancer
Presenter: Sungmin Kang
Session: Poster Display
Resources:
Abstract
40P - Intra-tumoral CD3, CD4, and CD8 as prognostic biomarkers in Asian breast cancer
Presenter: Jia Wern Pan
Session: Poster Display
Resources:
Abstract
41P - Brown fat activation demonstrated on FDG PET/CT predicts survival outcome
Presenter: Sonya Park
Session: Poster Display
Resources:
Abstract
42P - A promising anticancer drug for triple-negative breast cancer: OZ-001 suppresses tumor growth by dual targeting STAT3 and calcium signaling
Presenter: Jisun Kim
Session: Poster Display
Resources:
Abstract
43P - Performance evaluation of a combined risk model for breast cancer risk prediction in Indonesian population (TRIP Study)
Presenter: Marco Wijaya
Session: Poster Display
Resources:
Abstract
44P - Pathological complete response to neoadjuvant chemotherapy and outcomes in Her-2 negative locally advanced breast cancer
Presenter: Amrith Patel
Session: Poster Display
Resources:
Abstract
45P - Demographic determinants of pathological complete response after neoadjuvant chemotherapy in breast cancer
Presenter: Anvesh Dharanikota
Session: Poster Display
Resources:
Abstract
46P - Predicting toxicity following cancer chemotherapy by detecting transporter gene ABCB1 (C1236T, G2677T/A, C3435CT) polymorphism in breast cancer patients receiving chemotherapy with anthracycline and taxane either sequentially or concomitantly
Presenter: Tanuma Mistry
Session: Poster Display
Resources:
Abstract
47P - Sequencing of chemotherapy and surgery among older triple-negative and HER2-positive breast cancer patients with comorbidities
Presenter: Anvesh Dharanikota
Session: Poster Display
Resources:
Abstract
48P - The impact of preoperative axillary ultrasound on the false negative rate of sentinel lymph node biopsy in post neoadjuvant chemotherapy breast cancer patients
Presenter: Byshetty Rajendar
Session: Poster Display
Resources:
Abstract