Abstract 319P
Background
Ovarian cancer (OC) is a grave disease and is one of the top 10 causes of cancer-related deaths in women both worldwide and specifically in Taiwan. OC is difficult to get diagnosed early leading to its high mortality rate. OC demonstrates heterogeneity with its subtypes demonstrating unique incidence and survival rates, which also vary among populations with distinct genetic backgrounds. Hence, this study aims to introduce and validate stratification models that can potentially play pivotal role in enhancing the prevention and treatment strategies for OC among Taiwanese patients.
Methods
Patients registered in the Taiwan Cancer Registry (TCR), diagnosed between January 1, 2009, and December 31, 2015, were analyzed. Follow-up data was collected until December 31, 2017. Two distinct survival prediction models were formulated: Model 1 incorporated clinical variables from TCR, that overlapped with Surveillance, Epidemiology, and End Results (SEER) dataset. Model 2 included additional cancer-specific variables from TCR, with the intention of any potential enhancement in prediction accuracy. For external validation patients of White, Black, and Asian ancestry from SEER, collected within the identical study-period as TCR, were employed.
Results
Cox-proportional hazards regression analyses were performed with death as the primary outcome. In Model 1, significant factors included age, histology subtype, tumor-grade, pathological M, Pathological N, and lymph-node-ratio. While in Model 2, significant variables were age, histology-subtype, tumor-grade, pathological T, pathological M, CA125 levels, and residual tumor. Evaluation revealed C-index > 0.7 for both models. Calibration analysis demonstrated that the proportional difference between predicted and observed survival was largely <5%.
Conclusions
Model 1 and Model 2 exhibited strong and robust predictive capabilities for survival of OC patients. Notably, no significant racial disparities in predictions were observed. Therefore, these models hold potential for utilization in clinical treatment settings, facilitating informed decision-making between patients and their healthcare providers.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Health Promotion Administration, Ministry of Health and Welfare, Taipei, Taiwan.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
153P - IMbrave150: Exploratory analyses for investigating associations between overall survival (OS) and depth of response (DpR) or duration of response (DoR) in patients (pts) with unresectable hepatocellular carcinoma (HCC)
Presenter: Masatoshi Kudo
Session: Poster Display
Resources:
Abstract
154P - Adverse events (AEs) as potential predictive factors of activity in patients with advanced hepatocellular carcinoma (HCC) treated with atezolizumab plus bevacizumab (AB)
Presenter: Mara Persano
Session: Poster Display
Resources:
Abstract
155P - Penpulimab combined with anlotinib and nab-paclitaxel plus gemcitabine (PAAG) as first-line treatment for advanced metastatic pancreatic cancer: A prospective, multicenter, single-arm, phase II study
Presenter: Juan Du
Session: Poster Display
Resources:
Abstract
156P - Phase II trial of second-line regorafenib in patients with unresectable hepatocellular carcinoma after progression on first-line atezolizumab plus bevacizumab: REGONEXT trial
Presenter: Jaekyung Cheon
Session: Poster Display
Resources:
Abstract
157P - T/N ratio and radiation dose delivered do not correlate with the development of Radioembolization-Induced Liver Disease (REILD) in Hepatocellular Carcinoma (HCC) following Y90 selective internal radiation therapy (Y90-SIRT): A retrospective, single tertiary centre cohort study
Presenter: Daniel Yang Yao Peh
Session: Poster Display
Resources:
Abstract
158P - Single-cell RNA sequencing via Endoscopic Ultrasoundguided Fine-Needle Biopsy (EUS-FNB) Pancreatic Biopsies uncovered an aggressive subclone with a poor prognosis
Presenter: Yung-yeh Su
Session: Poster Display
Resources:
Abstract
159P - Classical computer vision and modern deep-learning of pancreatic stroma histology features to diagnose cancer
Presenter: Abdelhakim Khellaf
Session: Poster Display
Resources:
Abstract
160P - Interim analysis of the NAPOLEON-2 study: Safety evaluation of nano-liposomal irinotecan with fluorouracil and folinic acid for advanced pancreatic cancer
Presenter: Wataru Kusano
Session: Poster Display
Resources:
Abstract
161P - Screening and COnsensus based on Practices and Evidence (SCOPE): Real-world survey on Japanese and rest-of-world practice patterns in resectable pancreatic cancer
Presenter: Elizabeth Smyth
Session: Poster Display
Resources:
Abstract
162P - Recurrence pattern of hepatocellular carcinoma patients receiving curative surgery of RFA: An update
Presenter: Long Chan
Session: Poster Display
Resources:
Abstract